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Or 

ii) we have to show that the following factorization is 

possible 

[large distances] @ [short distances] (1.1) 

(examples are the deep-inelastic structure functions, 

semi- inclusive cross-sections, hadronic formfactors, 

etc.). 

In the first case the relevant quantities can be 

calculated in perturbation theory 

coupling constant: 

i) 

in a (Q2), the effective 

[a(Q2)lN[ro + rla(Q2) + r CY~(Q~) 2 

with ro,rl,r2 being calculable 

7 

+ . ..I + ocl-1 
Q2 

(1.2) 

in QCD, N being an 

integer, and Q" denoting a large variable. We have for 

instance (PQ = paraquarkonium) 

for R = o(e'e-~hadrons)/n(e+e-+u'~-) 

for r(PQ+hadrons)/r(PQ+yy) 

for photon structure functions. 

(1.3) 
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In the second case one obtains 

ii) 

c fi (x,Q2) @ 'JiW(Q2)) (1.4) 
i 

where x stands for a fixed ratio of two large 

invariants, Q ‘ is a large variable, and the summation is 

over quarks, antiquarks and gluons. The 

"cross-sections" 0. (short distance 1 functions, 

coefficient functions) are calculable in perturbative 

QCD and have expansion in a(Q‘) of the form of Eq. 

(1.2). On the other hand only the Q2 evolution of the 

functions fi can be calculated by perturbative methods. 

For instance f. stand 1 for Q‘ dependent parton 

distributions or fragmentation functions, and ui stand 

for elementary parton cross-sections to be discussed 

below. 

There is then a hope that at high energies measurable 

quantities are functions of a few effective universal 

(process independent) functions: 

- effective coupling constant e(Q2), 

- effective parton distributions silx,Q2), ii (x,Q2), 

G(x,Q2) 

connect 

and fragmentation functions Di(z,Q‘) in 

ion with inclusive and semi-inclusive processes, 

and 
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- effective "parton distribution amplitudes" $ (xitQ2) in 

the case of exclusive processes. 

Now since the coefficients r. u. of 
1' 1 

these effective 

functions are calculable in perturbation theory and are 

process dependent there is a chance that a finite number of 

experiments could determine these effective functions, for 

which only the Q2 dependence is known. Consequently 

predictions for other experiments could be made. 

This is the program of perturbative QCD. In order to 

make it meaningful one has to check whether 

i) perturbative expansions at present (finite) energies are 

well behaved, and 

whether 

ii) l/Q‘ effects in (1.2) and (1.4) (so called higher twist 

effects) 

and 

iii) non-perturbative (e.g., instanton) effects are small. 

In this review we shall discuss in detail point i), 

summarize the present status of ii), and only say a few words 

about the non-perturbative effects. 

In Section 2, after the recollection of most relevant 

formulae, we shall list the properties of both the formal and 

the intuitive approach to deep-inelastic scattering with 

particular emphasis put on higher order corrections. We 

shall discuss definition dependence of the effective 

functions a(Q2) and fi(x,Q2) in some detail. A brief account 

of the phenomenological applications will also be given in 
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this section. The material of this section represents our 

first topic. 

In Sections 3 and 4, which take care of the topics 2 and 

3, we give an almost complete review of all higher order QCD 

calculations done so far. Section 3 deals with the 

quantities of type (1.2) I whereas Section 4 discusses the 

quantities of type (1.4). Regularities in higher order 

corrections will be emphasized and the methods of dealing 

with large higher order correction will be briefly reviewed. 

In Section 5 we shall summarize our present theoretical 

and phenomenological knowledge of higher twist contributions. 

This is our fourth topic. 

Section 6 deals with Exclusive Processes. Since at this 

Symposium this (fifth on our list) topic has been already 

covered in the talks of Stan Brodsky and Tony Duncan, we 

shall only present here the basic structure of QCD formulae 

for the processes in question and list the most striking 

predictions. 

In Section 7, which deals with our sixth topic, we turn 

to the discussion of pL effects. In addition to large pL 

effects the recent progress in the understanding of 

intermediate and small pL physics will be reviewed. 

For completeness we shall very briefly discuss in 

Section 8 jet physics and photon physics. 

Finally in Section 9 a summary, an outlook and a list of 

outstanding questions will be given. 
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Further details on the topics discussed here can be 

found in various reviews which are listed in refs. [2-121. 
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2. Deep-Inelastic Scattering 

2.1. Basic Formulae 

In QCD and in the leading twist approximation the 

moments of the deep-inelastic structure functions are given 

as follows 

1 
Mk(n,Q2) = I dx x n-2 Sk (x,Q2) k=2,3 

0 

= c 
i=NS,S,G 

A;(p2) C;,n (4, g2), 
1-1 

(2.1) 

(2.2) 

where the functions Sk (x,Q2) are related to the standard 

deep-inelastic structure functions Fk(x,Q2) by g2=F2 and 

S3=x F3. In Eq. (2.2) Ai(u2) stand for the hadronic matrix 

elements of non-singlet (NS) , singlet (S) and gluon (G) 

operators and Ci n are the corresponding coefficient functions 

in the Wilson operator product expansion. Furthermore g is 

the renormalized quark-gluon coupling constant and uL is the 

subtraction scale at which the theory is renormalized. The 

important property of Eq. (2.2) is the factorization of 

non-perturbative pieces Ak(u2) from perturbatively calculable 

coefficient functions C1 ;,,(Q2/p2,q2). 

Since Ak's are incalculable by present methods, they 

must be found from the data at some arbitrary (but 

sufficiently large) value of Q2=u2=Qg. 
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Specializing Eq. (2.2) to non-singlet structure 

functions, and using renormalization group equations [2,31 

for CFsn (Q2/u2,g2) one obtains I 

NS 
Mk (n,Q2) = A~sCp2)exp[-j~~~f: L:Iif' j * CEs, Cl,,' i;l;;) 

1 +q) NS 
1671 Bk,n 1 

where terms of order y4 have been neglected. 

Furthermore 

O,n (1) ,n (0) ,n 

dNS 'NS ZNS = 'NS 'NS 
n =2&-p n 28, - 2B2 81 ' 

0 

(2.4) 

(2.5) 

-2 and g is the effective coupling constant. In obtaining 

Eqs. (2.4) and (2.5) the following expansions for the 

anomalous dimensions (y:'), 8 function and the coefficient 

function CFsn(1,{2) have been used I 

-2 
C;sn(l,;2) = $)(l t -%-- BNS , 16n2 k,n + **') ' 

(l)rn 94 + . . . 
+ 'NS (16n2)2 

(2.6) 

(2.7) 



8(g) = -B. -$ - y--J& + . . . 

9 

(2.8) 

In what follows we shall drop the weak or electromagnetic 
(k) charge factors 15~~. 

Finally the Q2 evolution of G2(Q2), corresponding to the 

8 function of Eq. (2.8), is given as follows 

j2(Q2) E ":f2' - 
1-(Bl/8i)ln ln(Q2/A2)/ln(Q2/A2) 

16a2 8 ln(Q2/A2) 
, (2.9) 

0 

with /L being the famous QCD scale parameter. As shown in 

(0) ,n Table I each of the parameters yNs (1) ,n , 'NS ' 50, 81 and 

BNS k,n has been calculated 113-221 by at least two groups. 

Their numerical values and the corresponding analytic 

expressions are collected in the same notations in refs. (31 

and [23]. 

To proceed further one can use either formal approach or 

intuitive approach. We begin with the formal approach which 

we discuss in Section 2.2-2.4. Subsequently we shall deal 

with the intuitive approach, (Section 2.5). 

2.2. Formal Approach 

Since the left-hand side of Eq. (2.4) does not depend on 
2 

v the r.h.s. of this equation can be put in the following 

form 



r 
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MyS(n,Q2) = iEs [UQ2)]d's [l + a(QZ) R;;n] , (2.10) 

with 

NS 
Rk,n=n , ZNS + BTSn r .2.11) 

and A:S being independent of u2. 

Let us list the most important properties of Eqs. (2.10) 

and (2.11) 

a) (1) ,n and BNS 
‘NS 

k n depend on the renormalization , 
scheme [171 used to calculate these quantities. This 

renormaliation prescription dependence of (1) ,n and BNS 
'NS k,n 

cancel in Eq. (2.11) if these quantities are calculated in 

the same scheme: i.e. the combination 

(1) ,n 
'NS 

2*0 
+ BtSn , I 

(2.12) 

is renormalization prescription independent. This 
NS (1) ,n renormalization prescription dependence of Bk n and of yNS 

is easy to understand. In order to find BF', one has to , 
calculate 1221 both the i2 corrections to the virtual Compton 

amplitude (photon-quark scattering), and the G2 corrections 

to the martix elements of non-singlet operators sandwiched 

between quark states as illustrated in Fig. 1. Whereas the 

virtual Compton amplitude is finite and henceforth 

independent of any renormalization scheme the matrix elements 
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in question are divergent and have to be renormalized. 

Different renormalization schemes lead then to different 

consequently to estimates of these matrix elements and 

different values for k n. BNS Since the f , 
bl 3 n,Q2) cannot depend on renormalization 

inal result for 

scheme, the only 

way that the renormalization prescription dependence can be 

cancelled is by (1) ,n that of yNs . This is indeed the case as 

shown in ref. [17]. 

b) NS The coefficients Rk n depend on the definition of , 
cr[22,241. If a(Q2) is redefined to cr'(Q2) with 

a = CZ* (Q2) + r[a’ (Q2) 1 
2 

+ O(cx’ 3, # (2.13) 

and r being constant, then the coefficients NS 
Rk,n in 

W. (2.10) are changed to 

[RFsnl' k n 
= $S 

I +4srd:S . (2.14) 

It follows from Eq. (2.14) that the coefficients REsn in 
, 

Eq. (2.10) have generally two components, 

'YSn= [~~~~~~::::,! + [:t::,,:nIe zd;S] ' (2.15) 

Here by "non-trivial" we mean an n dependence different from 
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dNS n . The "trivial" component can always be modified by 

redefining CL, whereas the non-trivial part is independent of 

the definiti 

for compari 

data. 

on of e. We shall later discuss efficient methods 
NS 

ng the non-trivial n dependence of Rk n with the I 

Of course the final answer for MFyn,Q2) is independent 

of the definition of o. (Q2) since each change of the 
NS coefficients Rk n is compensated by the corresponding change 

, 
of the values of n(Q2) or equivalently values of A extracted 

from experiment. This is illustrated by the following 

example. 

c) For the % [22] and Momentum Subtraction (MOM) 

[25,261 schemes, which have been discussed widely in the 

literature, Eqs. (2.13) and (2.14) read as follows 

aMoM(Q2) = sxm((Q2) 1 + 1.55 So 
a&Q21 
4n---- ' 

I 

and 

NS NS NS [Rk,nlE = [Rk,nlMOM + B. L1.551 dn . 

Eq. (2.13') corresponds to the following 

between the scale parameters A= and AMOM: 

A MOM = 2.16 A= . 

(2.13') 

(2.14') 

relation 

(2.16) 
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NS The parameters R2 n are plotted as functions of n for 
I 

the two schemes in question in Fig. 2. 
NS We observe that the coefficients R2 n in MOM scheme are 

, 
smaller than the corresponding parameters in z scheme. 

However for large n(n>lO) both [R~~nlMs and I$fnlMOM are 

large 2 and increase as (In n) . In Section 4 we shall discuss 

methods for dealing with these large corrections. 
NS Having the parameters Rk n at hand we could now use 

'2 Eq. (2.10) to extract aMOM(Q ) and e.=(Q2) from the data. 

For pedagogical reasons however we shall proceed differently. 

As our standard values for AMOM and Aa we shall choose the 

following values 

AM? = 0.30 GeV and AMOM = 0.55 GeV . (2.17) 

As shown in Fig. 3 these two values for A lead for a2210 GeV2 

to essentially indistinguishable results for M2 NS(n,Q2) if the 

corresponding parameters 2 n of RNS Fig. 2 are used in , 
Eq. (2.10). We remark that the leading order (L.O.) 

expression (Eq. 2.10 with B1 and RFsn equal zero) would give 
, 

a curve,similar to the curves in Fig. 3 if the corresponding 

scale parameter AL0 was chosen to be AL0 = 0.45 GeV. This 

value is consistent with the experimental data. 

Furthermore the parameters in Eq. (2.17) are larger only 

by a factor 2-3 than the corresponding AZ and AMOM extracted 

from the lattice calculations [271. Inclusion of fermions in 

the latter calculations would make this difference even 
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smaller. 

Our standard values for Am and AMOM lead through 

Eq. (2.9) to am(Q2) and aMOM (Q2) which are shown in Fig. 4. 

For comparison also aLo (Q') with A LO = 0.40 GeV and 

A Lo=0.50 GeV are plotted there. As expected (see (2.13')) 
2 2 a=(Q )<aMoM(Q ). However it is interesting to notice that 

both aM2 and aMOM are smaller than the corresponding values 

of aL0 [28]. This is mainly due to the second term in 

Eq. (2.9). Consequences of this fact will be discussed later 

on. 

An observant reader has noticed that our standard values 

of Eq. (2.17) do not satisfy Eq. (2.16). This is due to the 

fact that when we inserted Eq. (2.13') into (2.10) and 

expanded in powers of a= we consistently neglected terms of 
L 0 (am). Figure 5 shows how the relation (2.16) would be 

violated if different values for A= have been used and if 

the expansion in powers of l/in Q2/A2 (see (2.19)) instead of 

the expansion in powers of a(Q2) has been made in Eq. (2.10). 

We observe that whereas for A,3<0.3 the relation (2.16) is 

quite well satisfied there are considerable deviations for 

AMs > 0.5. In what follows we shall throughout this paper use 

the values of Eq. (2.17). 

d) It is instructive to calculate the term 

ai(Q2) NS 

l+ 4* [R2,n1 i i = KS,MOM , (2.18) 

in Eq. (2.10) which is equal unity in the leading order. 
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Using our standard values of ai (Fig. 4) we obtain the 

curves shown in Fig. 6. We conclude that in the expansion in 

a (Q2) the next-to-leading order corrections to MN' 2 (n,Q2) 

calculated in the MOM scheme of refs. [25,261 are smaller 

than those in the is scheme. An opposite conclusion is 

reached in the case of the expansion in the inverse powers of 

logarithms. This expansion can be obtained from Eqs. (2.10) 

and (2.9) with the result 

MtS(n ,Q2) = iis 
[b. ln~~2~~!~)~ [' + @~'~~~:'~A'?,] ' 

(2.19) 
where 

'0 NS RFrn(Q2) = RflSn - B dn lnln 
, 0 

(2.20) 

The quantity in the last bracket in Eq. (2.19) is 

plotted in Fig. 7. 

e) One may think for a while that there is no point in 

doing next to leading and higher order calculations since at 

the end one can anyhow change the size of various terms in 

the expansion by redefining a. The point is however that by 

doing consistent higher-order calculations in various 

processes such as deep-inelastic scattering, e'e-+hadrons, 

photon-photon scattering etc. one can meaningfully compare 

QCD effects in these processes using one universal effective 

coupling constant a(Q2) extracted e.g. from deep-inelastic 
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scattering data. 

BY studying higher order corrections to various 

processes one can hopefully find a universal definition of CL 

for which QCD perturbative expansions are behaving well. 

Such studies can be found in refs. (29,301. In this review 

we shall first present in Sections III and IV all next to 

leading order corrections in the s and MOM schemes with our 

standard values of Ai of Eq. (2.17). This will allow us to 

see whether %s and 'MOM are good candidates for such a 

universal definition of the effective coupling constant. 

f) We have stated under point b) that Mk NS (n,Q2) being 

physical quantities do not depend on the definition of a. On 

the other hand it should be remembered that different 

definitions for CL lead to different estimates of higher order 

correction, , not included in the analysis. The 

definition should be preferred for which the conve,rgence of 

the perturbative expansion is fastest. Since at present no 

such higher order calculations are known (see point g), 

various authors have argued in favor of one definition for CL 

or another. For instance Celmaster and Sivers [301 give 

arguments in favor of the MOM scheme. On the other hand 

Stevenson [31] suggests a method for finding the optimal 

scheme for QCD calculations. Here we shall take a different 

approach (see Section 3) which is as follows. 

We have seen that MOM and E schemes with Ai of 

Eq. (2.17) lead to the same prediction for deep-inelastic 

scattering. The important question is then whether these two 
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schemes, again with Ai of Eq. (2.17), lead also to the same 

predictions for other processes calculated to the same order 

in a as deep-inelastic scattering. Possible differences in 

the predictions would indicate the importance of still higher 

order corrections and the reliability of our calculations 

based on truncated perturbative expansion. 

g) It should be remarked that attempts have been made 

132,331 to estimate a2 corrections to Eq. (2.10) 

i.e. NS coefficients Pk n defined by 
I 

dNS 
MFS(n,Q2) = i:S[a(Q2) 1 n 1 + a (Q2) 

4ll RNS 
k,n 

+ a2(Q2) pNS 
(4x)2 1 k,n - 

(2.21) 

PFsn are given as follows 1321 I 

PNS = BESn . f + + (ZN,s)2 - k zfs + Lrsn, k,n , 0 , 

where 

(2.22) 

(2.23) 

Here k ,,, DNS c2) ,n and 
'NS 
and g(cL/4r)3 82 

are the coefficients of I 
(cr/4*)2, (c(/471)3 in the expansions (2.6), (2.7) 

and (2.8) respectively. These coefficients have not been 

calculated so far. One notes however that if Z:Sof Eq. (2.5) 

is inserted into (2.23), seven out of ten terms contributing 
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to PNS k n depend only on the known parameters of Table I. One 
I 

argues then that there is a 30% uncertainty in the estimate 

of PNS k,n' The problem with this argument is that out of the 

"known" seven terms only two do not depend on the 

renormalization scheme used to renormalize the local 

operators (see point a)). The sum of the remaining five is 

renormalization scheme dependent, and this dependence has to 

be cancelled by that of Ltsn. , 
The LEsn are however unknown. 

, 
In summary we think that little is known about the size of 

the coefficients Pk n "S [341, except maybe for large values of n 

as discussed in Section IV. 

h) The novel feature of next to leading order 

corrections is the following n dependence of yNs (ljvn [17,35] 

'NS 
(1) ,n = ya n + C-1)" Y; , (2.24) 

where Y*, and may be analytically continued in n. 

Consequently the even and odd values of yNs (ljrn must be (for 

instance in the process of moment inversion) analtically 

continued to yz and y a -y 8 This n n respectively. also 

implies that 

RNS k,n = 
n even 

n odd 
(2.25) 

where the notation is obvious. The fact that Ri#O is related 
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to the occurance of quark+antiquark transitions [35,181 which 

take place at the two-loop level (see Fig. 8) in addition to 

quarkequark transitions. Taking into account the crossing 

properties of various structure functions (see Eq. (2.124) of 

ref. [3]) one finds for instance, that due to being 

non-zero the combinations Fep - Fen 
2 2 and FVp 2 - F;p evolve 

differently with Q2. In particular the intergral 

depends weakly on Q2, whereas 

11 J [ Fvp - Fjp = 2 , 
0 x 2 1 

(2.26) 

(2.27) 

i.e. Adler sum rule is satisfied. The effect in question is 

however very small [361 and in most applications can be 

totally neglected. For instance the integral of Eq. (2.26) 

changes by 0.5% in the range of Q2 from 5 GeV2 to -! Even 

smaller effect is found for n>2. - 

i) Since [22,371 

R3,n , = RySn - $ $:) , (2.28) 

the Q2 evolutions of the structure functions 2 FNS and F3 
differ slightly from each other beyond the leading order. We 
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shall discuss this difference in Section 2.5. 

j) Finally Quantum Chromodynamics predicts 1221 a weak 

violations of various parton model sum rules such as 

Gross-Llewellyn-Smith, Bjorken, and Callan-Gross relations. 

Explicit formulae can be found in Section 2.3 of ref. [3]. 

This completes the listing of the main properties of 

Eq. (2.10). We shall now turn to a brief account of the 

phenomenological tests of this equation. 

2.3 Brief Comparison with Data 

Equation (2.10) can be directly compared with the 

experimental data. It is however often useful to use (2.10) 

to construct quantities which are insensitive to the 

definition of a and which exhibit a "non-trivial" n 

dependence (see Eq. (2.15)) of next to leading order 

corrections. We shall discuss here two such quantities. 

One can use formula (2.10) to construct the following 

ratio [38] 

pm = d[ln MNE(m,Q2)1 
n- - = g [l + 6oln(;2,*2) ($g -dF)](2.2gJ 

d[ln M~s(nlQ2)l 

where I'd" on the L.h.s. of this Equation stands for the 

derivative with respect to In Q2. The coefficients of 

1/(BOln(Q2/A2)) obviously (see Eq. (2.14)) do not depend on 

the definition of a. Equation (2.29) is compared with the 

data in Table II, where also the leading order prediction, 
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P; = dT,'drS, is shown. We observe that the next-to leading 

order corrections improve the agreement of the theory with 

data. 

One can rewrite Eq. (2.10) as follows [24,22,401 

MFS(n,Q2) = if" [601n;;2,Az)] "'1 - 2 ;;;;;":f:"'j? (2.30) 

where 

A(k) = * exp n (2.31) 

The n dependence of hAk) is independent of the definition of 

a. *i(k) 
n increases NS roughly by factor 2 and 3 for F2 and F3 

structure functions respectively if n is varied from n=2 to 

n=8. In the leading order A is independent of n. As shown 

in Fig. 9 the n dependence of hAk) as given by Eq. (2.31) is 

in a very good agreement [39-411 with the experimental data 

142-441 indicating the importance of next to leading order 

corrections. (2) This is seen especially for An . 

2.4 Singlet Structure Functions Beyond the Leading Order 

The study of next to leading order QCD corrections to 

the singlet structure functions is much more complicated than 

for the non-singlet structure functions due to the mixing 

between fermion singlet and gluon operators which enter 

Eq. (2.2). The derivation of formal expressions analogous to 
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Eq. (2.10) can be found in ref. (31. Here we shall only make 

a few remarks. 

i) The analysis of singlet contributions requires the 

calculation of the two-loop anomalous dimension matrix 

and of the one loop corrections to the fermion singlet 

and gluon Wilson coefficient functions Ck n ', (l,G2) and 

C;,,(l,92). As in the non-singlet case, one has to take 

care that all these quantities are calculated in the 

same renormalization scheme. First calculations of 

these quantities have been done in refs. (20,221. The 

calculation of the two-loop anomalous dimension matrix 

performed in ref. 1201 is particularly complicated. 

ii) It turns out that the formal expressions for the moments 

of singlet structure functions are very simple (451 e.g. 

M:(n,Q2) = i', [a (Q2)1 dit 1 + a(Q2) + 
4rr R2,n 1 

(2.10') 

+ ", [a(Q2)l dn l+a(Q2) - 
4ir R2,n 1 

+ + 
where dn and R;,n are known and $, have to be extracted 

from the data. The next to leading order corrections to 

the singlet structure functions turn out to be of the 

same order as in the non-singlet sector although their n 

dependence in particular at low values of n is different 

due to the mixing. Numerical estimates of these 

corrections are given in ref. [451,[461. 
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2.5 Intuitive Approach 

2.5.1 Non-Singlet Sector. so far our discussion of 

deep-inelastic scattering was very formal. We shall now 

express Eq. (2.4) in terms of parton distributions and parton 

cross-sections. Let us first recall that the parametrization 

of the QCD prediction (2.10) in terms of an effective cr(Q2) 

and explicit higher order corrections (Rk n NS ) depends on the , 
definition of cr(Q2). Similarly the parametrization of QCD 

predictions in terms of "effective" parton distributions and 

parton cross-sections depends on the definition of parton 

distributions. We shall discuss here two examples. 

i) Definition A [47] 

One writes Eq. (2.4) as follows 

MfS (a) NS (n,Q2) = <qNS(Q2)>n * crk,a(n,n(Q2)) , (2.32) 

where 

(a) 1 
<qNS(Q2)>n = 

J 
dx x"-'qNS 

0 
a (x,Q~) = A:' 

(a) 
= .qNS (Q;) >n ZNS n 

(2.33) 1 
are the moments of an effective Q 2 dependent non-singlet 

parton distribution qiS(x,Q2), and 
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NS ok a(n,a(Q2)) 
1 

= I J 0 
dx xn-2 ara(x,u(Q2)) 

I 

= 1 + ':i2) B;& , (2.34) 

may be regarded as the moments of the elementary parton 

cross-section. Equation (2.32) is illustrated schematically 

in Fig. 10. The index "a" distinguishes the definition of 

parton distributions in question from the second definition, 

which is discussed below. Furthermore in order to unify 

notations we have put p2=Qi. Note that in this definition the 

moments of q NS (x,Q2) are equal to matrix elements of a 

non-singlet operator normalized at Q2. Equation (2.32) can be 

inverted to give 

FFs(x,Q2) = J 1 x [Cs~SK,Q2~la~Sa 
XC 

+(Q2)) . (2.35) , 

(x/c,a(Q2)) can be found 

alytic expressions for 

Exact analytic NS expressions for ck,a 

in in refs. [48,49]. Approximate an 

5 qts(c,Q2) will be discussed below. 

ii) Definition B [37) 

NS Here the full next-to leading order correction to F2 is 

absorbed into the definition of parton distributions. 

Equations (2.32)-(2.34) are replaced by 
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NS (b) 
Mk (n,Q2) = <qNS(Q2)>n o!sb (n,a (Q2) ) (2.32') , 

<qNS (Q2 
(b) (b) 

') >n = <qNS (Q;) >n 

and 

Y2 (~~1 -G2 (Q;) 
1+ 

16n 2 

(2.33')' 

ozSb(n,a(Q2)) = 
1 I k=2 

, 

\ 

NS 1 + a(Q2) (B3 n-B;Sn) 
4n ' ' 

respectively. Again exact analytic a;fb(x/C ,a (Q2) ) can be found in ref. 

approximate analytic expressions for 5 qEs(g,Q2) will be 

discussed below. 

k=3 
(2.34') 

expressions for 

48,491 and the 

Let us list some of the properties of both definitions 

of parton distributions. 

i) the parton distributions defined by Eq. (2.33') are 

renormalation prescription independent. On the other 

hand, since 2:' and BiSn are separately renormalization I 
prescription dependent so are the parton distributions 

defined by Eq. (2.33). 

ii) the renormalization prescription dependence of parton 

distributions in the case of definition A can be used to 

find a renormalization scheme for which the evolution 

equations (2.33) are particularly simple. This turns 

out to be m scheme for which the parameters n zNS are 

very small [3,49] 
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ZNS n = 1.5 - 2.5 2zn<8. (2.36) 

Thus in the case of Es scheme the evolution 

equations for qis(x,Q2) are essentially the same as the 

leading order equations [50] except for the modified 

evolution of the effective coupling constant (see 

Eq. 2.9). The evolution equations (2.33') in the case 

of definition B differ substantially at large n (large 

x) form the leading order equations due to the large 

values of Bk,n for large n and due to the non-trivial 
2 behaviour Bk,n*(ln n) . 

ii) Whereas the input parton distributions or input 

structure functions at some Q"=Qi in the case of the 

def. NS B will be for F2 the same as in the leading order 

(i.e. the data does not change) the input distribution 

in the def. A will differ considerably at low Q2 and 

large x from those used in the leading order 

phenomenology. The reason is that B,!s differ 

considerably from 1 for low Q2 and large n. 

Of course the final results for the structure functions 

should be independent of any particular difinition since the 
NS differences in the the parton distributions qa NS 

and qb will 

be compensated by the corresponding differences in the parton 

cross-section 0 NS 
a and or. A detailed study of the effects 

discussed here has been done in ref. [49]. It turns out that 

in the range 5 < Q2 < 200 GeV 2 and 0.02 < x < 0.8 one can 
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find simple parametrizations for both definitions of parton 

distributions which represent to a high accuracy the 

Eqs. (2.33) and (2.33'). 

These parametrizations are of the form of leading order 

parametrizations of ref. [51] i.e. 

xq NS(x,Q2) 
nlG) 

s x 
“2 (S) 

(1-x) 

where 

Q(S) = np + n; : I 

and 

Z=-ln i I a(Q2). a (Q;) 

(2.37) 

(2.38) 

(2.39) 

0 The parameters ni are to be found from the data at some 

Q"=Qo'. The "slopes" nj are on the other hand predictions of 

the theory. It should be however remembered that ni's depend 

weakly on ny and A. A detailed procedure for finding 0;'s for 

given input values noi and A can be found in ref. 149,511. 

Finally it should be remarked that the method of ref. 149,511 

can be trivially extended to the input distributions at Q2Q; 

of the form 

c Ai xBi(l-xjCi . 
i 

(2.40) 

In accordance with points ii) and iii) one has 



[noI 
i'L0 

= [n$ # ((1 , 
b a 

and 

LO a b' 
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(2.41) 

(2.42) 

where the indices LO, a and b stand for leading order, the 

definition A and the definition B respectively. For instance 

[nilb=2.71 and [ni],=3.40 whereas [nila=0.76 and [n;lb=1.5. 

On the level of structure functions themselves two main 

properties of the next to leading order corrections are 

worth-while mentioning (491. 

i) If Aa is chosen so that Am=ALo, where AL0 is the scale 

in the leading order expression (Bn NS=O, Zr'=O) then a 

stronger increase (decrease) of structure functions at 

small (large) values of x is predicted by next-to 

leading order corrections relative to L.O. predictions. 

If AMs is decreased so that scaling violations for 

0.4 2 x < 0.7 are similar to those predicted by leading order 

formula still some additional increase due to next-to-leading 

corrections is seen at small X. This non-trivial x 

dependence of next to leading order corrections is related to 

the non-trivial n dependence of An in (Eq. 2.31). 

ii) The increase at small x in question is more pronounced 

for F3 than FtS. 
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There is some indication that this additional increase 

in F3 at small x has been seen in the data [521. Detailed 

comparison should however also include charm production 

effects I531 in F3 which are of order (mi-mi)/Q2 with mc and 

ms being charm and strange quark mass respectively. 

2.5.2 Singlet Sector. In the case of the singlet structure 

functions the arbitrariness in the definition of parton 

distributions is twofold. There are two subprocesses 

contributing: photon-quark and photon-gluon scattering. 

Within each subprocess there is the arbitrariness of the type 

discussed for non-singlet parton distributions. Furthermore 

due to the mixing between quark and gluon operators the 

separation of the full deep-inelastic process into quark and 

gluon subprocesses depends on the definition of parton 

distributions. For instance the Q2 evolution of singlet 

quark distributions depends on the definition of gluon 

distributions and vice versa. 

The analogs of definitions A and B of section 2.5.1 are 

for the singlet parton distributions as follows 

i) Definition A 

$(n,Q2) = Az(Q2)*Cz n( I 
-2 

ltg 1 
G2 G 

+ A,(Q PC2,+i2) 

(a) 
E <qS(Q2)>n -ui(n,a (Q21 )+<G(Q2)> 

(a) 
n *oz(n,a (Q2)) , 

(2.43) 
where 
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(a) 
<qs (Q2) 'n 

(a) 
z Az(Q2) and <G(Q2)>, = ~((4~) , (2.44) 

are the moments of the effective, Q2 dependent, singlet 

quark and gluon distributions, $x,Q21 and Ga(x,Q2), 

respectively. 

S 2 u,(n,a(Q 1) : Cz,n (1,G2) and sz(n,a(Q2)) s c;,n(l,;j2) 

(2.45) 

are the corresponding parton cross-sections. Equation 

(2.43) can be inverted to give 

Fz(x,Q2) = ’ dS J [ x r 5 q~(LQ2)o; (+(Q2)) 

+ 5 Ga(SrQ2)uz (:,a(Q’l)] . (2.46) 

Exact analytic expressions exist for and s E 1481. 

The evolution equations for qi(<,Q2) and Ga(E,Q2) can be 

found in refs. [3,54,551. They are a straightforward 

generalization of the familiar leading order equations 

[501. Furthermore in the s scheme these equations do 

not differ substantially from the leading order ones. 

ii) Definition B 

Here the full next-to leading order corrections to 



31 

S F2 is absorbed into the definition of parton 

distributions, i.e. 

(b) 
M;(n,Q2) = ~q'(Q~j>~ * 1 (2.47) 

As discussed in ref. [201 this equation defines also 

tG (Q2) >hb) . The evolution equations for q;(x,Q2) and 

GbhQL) are rather involved. They can be found in 

ref. [201. 

The important lesson which we draw from this section is 

that since the separate quark and gluon contributions are 

definition dependent, both have to be taken consistently into 

account before a physical answer for F: is obtained. 

2.6 Miscellaneous Remarks 

i) It should be remarked that in ref. [39,56,571 fits of of 

structure functions or their moments to the data have 

been made with the general conclusion that the next to 

leading order corrections improve the agreement of QCD 

with the data. 

ii) A message to our experimental colleques: in 

refs. [391,[491,[561, simple inversion methods of 

moments of structure functions or parton distributions 

with next to leading order corrections included, have 

been developed. Therefore the analysis of structure 

functions beyond the leading order should be now as easy 

as in the leading order. These methods devide into four 
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classes. In refs. [39] and [491 various explicit 

parametrizations of the effective parton distributions 

have been given. One of these parametrizations has been 

discussed in Section 2.5. Another method is to write 

F(x,Q2) as follows 

F(x,Q2) = !: dy K(x,Y,Q~,Q~) F(Y,Q~) , 

and find analytic expressions for the kernel 

K(x,y,Q2rQ;). This method has a slight advantage over 

the previous method in that the input distribution can 

be parametrized at will. For the leading order this 

method has been discussed in ref. [SE] and ref. [591 for 

the non-singlet and singlet structure functions 

respectively. Generalization of the kernels K( ) beyond 

the leading order has been given in ref. [561. Still 

other methods are discussed in ref. [601. Finally the 

evolution equations for parton distributions can be 

integrated numerically. All methods lead within a few 

percent of accuracy to the same results. 

iii) It has been suggested in ref. [611 to use the moments 

B M,N(Q2) = (“;;;l;) ! J’ ~~(l-x)~F(x,Q~) dx , (2.49) . . 0 

rather than the moments of Eq. (2.1), which for N>4 are 
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v) 

vi) 
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mostly sensitive to x>o.5. With increasing M the 

moments of Eq. (2.49) become sensitive to small values 

of x and are particularly well suited for the study of 

gluon and sea distributions which are concentrated at 

small values of x. 

The next to leading order QCD corrections to the Q2 

evolution of the polarized deep-inelastic structure 

functions have been calculated in ref. 1621. This 

generalizes previous leading order studies of Ahmed and 

Ross [63] and of Altarelli and Parisi [50]. It would be 

interesting to make one day a phenomenological study of 

these corrections. 

There is the outstanding question of calculating the x 

dependence of structure functions at fixed value of Q2. 

This has been addressed in the context of specific 

models in refs. 1641 and [65]. 

In this review we shall not discuss neither target mass 

effects nor heavy quark effects. Recent discussions of 

these topics can be found in refs. [531,[66l,and [671, 

where references to older papers can be found. 

vii) Recent discussions of longitudinal structure functions 

can be found in refs. [681-1711. 
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2.7 Summary 

A lot has been learned in the last few years about 

higher order QCD corrections to deep-inelastic scattering. 

These corrections turn out to improve the argreement of the 

theory with data. There are however still many problems to 

be solved on both experimental and theoretical level. First 

there is the question of the importance of higher twist 

contributions which we have not discussed so far. We shall 

return to this question in Section V. Secondly the high Q2 

experiments do not completely agree on the size of scaling 

violations. In particular the CDHS and BEBC groups (v 

experiments) find the parameter ALO $ 0.3-0.5 GeV, whereas 

the recent p-experiments [72] prefer ALo < 0.2 GeV. Are these 

differences related to experimental problems or maybe to 

different physics in v and u initiated processes [73], 

explanation of which lies outside the QCD framework? Answer 

to this question would surely improve our understanding of 

scaling violations. 

For the time being we shall continue our review by 

turning to other processes, while keeping in mind the lessons 

of this section. 
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3. Review of Higher Order Corrections I 

In this section we shall discuss the next to leading 

order correction to three quantities for which at high 

energies the expansion (1.2) is valid. These are 

i) The ratio 

+ - 
Re e o(e+e-+hadrons) =- 

0 (e+e-+p+p-) 
, 

ii) Photon structure functions, 

and 

iii) Various ratios in quarkonium decays of which 

p = r(PQ+hadrons) 
r (wz!+YY) , 

with PQ standing for paraquarkonium, is a well 

example. 

(3.1) 

(3.2) 

known 

The parameters ri of Eq. (1.2) are calculable in QCD. 

Therefore since we have already "extracted" the values of ars 

and aMOM or equivalently As and AMoM (see Eq. 2.17) from 

deep-inelastic data we can immediately make QCD predictions 

for the quantities above. In what follows we shall ask two 

questions: 
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a) How large are the next to leading order QCD 

corrections to i)-iii) in G and MOM schemes of Section 2, 

and 

b) Do both schemes (with Ai of Eq. 2.17) lead to the 

same final answers for the quantities above? 

3.1 e+e-+hadrons 

In the simple parton model and in QCD one obtains for 

Q2sE2 +Ol c.m. 

R e e 
m +-=3xef , 

i 
(3.3) 

where 3 is the number of colors, ei are the charges of the 

quarks and the sum runs over the flavors. The fact that 
+- 

R e e approaches a constant value is a consequence of the 

lack of renormalization of the conserved electromagnetic 

current. For finite values of Q 2 there are calculable 

asymptotic freedom corrections to Eq. (3.3) and the formula 
+ - 

for Re e reads as follows 

+ - + - 
R e e =Rze +-a2(Q2) +ree , 

rr2 1 (3.4) 

where the terms of O(a3) have been neglected. 



37 

The O(a) correction has been calculated in ref.1741. 
+ - 

The coefficient re e depends on the definition of CL and 

is given for four flavors as follows [75,76] 

f - 
ee = 

I 

1.52 FE 
r . 

-1.70 MOM 
(3.5) 

Inserting our standard values of a at Q2=30 GeV2, i.e., 

crrs=0.20 and aMOM =0.25 we obtain the following results for 

the square bracket in Eq. (3.5) 

[=I = 1 + 0.064 + 0.006 = 1.070 

[MOM] = 1 + 0.080 - 0.011 = 1.069 (3.6) 

We observe that 
+- 

a) O(a) and O(a2) corrections to Re e are small in 

both schemes, 

b) the two schemes in question lead to the same final 
+ - 

result for Re e . 

A careful comparison of Eq. (3.4) with experimental data 

involves smearing over the resonances and inclusion of 

threshold effects. We refer the interested reader to ref. 

1771 for details. A recent analysis of this type has been 

done by Barnett, et al. [781, who find that the data are 15% 

above the theory predictions. Since the data have a 

systematic error O(lO%) this finding is not too disturbing. 
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One may however, speculate that this "discrepancy" between 

theory and experiment is due to production of some new 

objects. Such speculations and references to further 

literature can be found in ref.[78]. 

3.2 Photon Structure Functions 

The process y+y*hadrons can be measured in 

e+e-+e+e-+hadrons as shown in Fig. 11. When one photon has 

large Q2 and the other is close to its mass-shell the 

photon-photon process can be viewed as deep-inelastic 

scattering on a photon target. The corresponding virtual 

Compton amplitude is shown in Fig. 12 and as in the standard 

deep-inelastic scattering one can introduce structure 

functions as F;, this time photon structure functions. 

As depicted in Fig. 12 there are two contributions to 

the process in question. One in which the target photon 

behaves as a hadron (Fig.12a) and another one in which the 

photon acts as a point-like particle (Fig.12b). This 

separation into two components can be elegantly expressed as 

follows [79] 

F; n q , J ldx x"-~F;(x,Q~) 
0 

(3.7) 

= ‘, c&<YloylY> + c;,n<Ylo;lY> . (3.8) 
i=NS,S,G 
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The sum in Eq.(3.8) represents the first contribution 

above with operators and coefficient functions identical to 

those encountered in the standard deep-inelastic scattering 

(see Eq.(2.2)). The matrix elements <Y lqlY> are for 

i=NS,S,G incalculable in perturbation theory but can be 

estimated in the vector dominance model. The coefficient 

functions Ci,n(i=NS,S,G) are already known from Section 2 

(Recall that the coefficient functions do not -epend on the 

target). Therefore this component will be for n>2 suppressed 

by power of log Q2. For n=2 it contributes a constant term 

due to the vanishing of the anomalous dimension d; of 

Eq.(2.10'). 

The last term on the r.h.s. of Eq.(3.8) represents the 

point-like contribution. The operator 0; which is not 

present in the analysis of the deep-inelastic scattering off 

hadronic targets, is the analog of the gluon operator 0:. As 

noted by Witten, [79], 0: must be included in the analysis of 

photon-photon scattering. The reason is that, although the 

Wilson coefficients Cy n are ObEM) I the matrix elements 

<YlOynlY> are O(1). Therefore the photon contribution in 

Eq.(3.8) is of the same order in cEM as the contributions of 

quark and gluon operators. The latter have Wilson 

coefficients O(1) but matrix elements in photon states 

ObEM) . 

What is interesting about the point-like contribution of 

Eq.(3.8) is that it can not only be calculated in 

Perturbative QCD but it also dominates at large Q2. One 
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obtains 

(3.9) Fy 2,n(Q2) = a& 'i?- "$f&$]-'~+;: !d$] 

= 
uiMCan , (3.10) 

where terms which vanish for Q 2+m have been neglected. 

The constants an have been calculated by Witten [79]. 

The parameters 

RY = - !h 
n an SO ' (3.11) 

which depend on the definition of a, have been calculated in 

ref.[801, and are compared to the analogous parameters of the 

standard deep-inelastic scattering (Eq. 2.10) in Fig. 13. 

We observe that the next to leading order corrections to 

photon structure function F; are in the z and MOM schemes 

slightly larger than the corresponding corrections to the 

hadronic deep inelastic structure function Ft" of Section 2. 

We do not show in Fig. 13 the prameter R; which involves the 

perturbatively uncalculable photon matrix element of the 

hadronic energy momentum tensor, for which d;=O (see the 

comment above). Recently the calculation of ref.[80] has 

been confirmed by Duke and Owens [El]. The moments Fy 2 ,ntQ2) 
are shown in Fig. 14 for Q2=10 GeV2, and for our standard 



41 

values of AK and AMOM. We observe that the @S and MOM 

schemes lead to the same final prediction for Fz ,,. For I 
comparison the leading order prediction, that of Witten, is 

also shown in Fig. 14. The moments of Eq. (3.9) can be 

inverted to give Fz(x,Q2), which is shown in Fig. 15. Also 

the leading order predictions are shown there. We observe 

that whereas for - - 0.3<x<O.8 the next to leading order 

corrections are small, they are large for small and very 

large values of x. For small x we expect however vector 

dominance contributions to be important. For very large x 

the large corrections can probably be handled as discussed in 

Section 4. In any case the absolute prediction for Fz in the 

range 0.3<x<O.8 should be amenable to experimental tests. In 

this range of x the vector dominance contribution, which 

decreases with increasing x is relatively small already for 

Q2=10 GeV2, and in addition as we have seen above the 

perturbative expansion in a seems to behave well. 

Experimentalists should therefore find Fz to be an increasing 

function of x up to x=0.7 and a decreasing function of x for 

x>o.7. The last feature is a particular prediction of QCD, 

which is not present in the simple parton model (the second 

diagram in Fig. 12 without gluon corrections). In the latter 

FT(x,Q2) fl [x2+(1-x)2]ln Q2 , 

i.e., Fz(x,Q2) is a monotonically increasing function of x. 
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Preliminary measurements of Fs(x,Q2)[82] indicate that 

for intermediate values of x the increase of the photon 

structure function with increasing x is seen. Large 

errorbars for larger values of x make it as yet impossible to 

test the turnover as predicted by QCD. In any case these 

data indicate that the point-like contribution dominates over 

the vector dominance contribution already at present values 

of Q2. Recall that the vector dominance photon structure 

function decreases with increasing x. 

The formal discussion of photon structure functions 

presented here can be put on a more intuitive level, in which 

case the quark and gluon distributions in a photon are the 

basic elements. The presentation of this intuitive approach 

can be found in ref.[83]. Further aspects of photon 

structure functions are discussed in ref.[84,85]. In 

particular Hill and Ross [85] discuss heavy quark mass 

effects in photon-photon scattering which turn out to be 

important. Of interest is also the paper by Chase [861, 

where the scattering of two far off-shell photons (large p2 

and large Q2 in Fig. 11) is considered. 

Finally the polarized photon structure functions are 

discussed in ref.[87]. 

3.3 Paraquarkonium Decays 

We begin our discussion of heavy quarkonium decays with 

the paraquarkonium (IS,) decays. Consider the ratio 



p z 
9e$z, 

2- 
r(lSo+hadrons) 

r (lso’YY) 
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(3.12) 

where uEM is the electromagnetic coupling constant and e Q 
is 

the charge of the constituent quark. As discussed in 

ref.[88], and recently more generally in ref.[89], the ratio 

P should be insensitve to bound state effects and should be 

calculable in perturbation theory in c(Q2). In the leading 

order we have [90] 

2 2 12n 
1 

2 
PLO= [~,,(Q)l = 

251n(Q2/Aio) 
(3.13) 

where the numerical factors correspond to four effective 

flavors. What the relevant value of Q 2 is , will be discussed 

below. 

If next to leading order corrections are taken into 

account we obtain 

2 ai (Q2) 
P = [ai(Q2)1 [l+Hi(r) TI I 

zz 
c 

+0.48 
Ei (r,Q2) 

1 ln(Q2/Ai) ' 

(3.14) 

(3.15) 

where 



gi(r,Q2) = Hi(r) - 3.08 lnln , 

44 

(3.16) 

and in obtaining (3.15), Eq.(2.9) has been used. The index i 

in Eqs. (3.14)-(3.16) distinguishes between various 

definitions of the effective coupling constant. The index r 

distinguishes between various choices of Q2. Let us take 

Q2 2, = [rm] (3.17) 

with m being the mass of the contituent quark. Then we have 

the relation 

rl Hi(rl) = Hi(r2) + 8.33 In r 
0 

. 
2 

(3.18) 

In particular 

Hi(l) = Hi(2) - 5.77 . (3.19) 

The parameters Hi(2) have been calculated in ref.[88] in 

t'Hooft's MS scheme. Using the corresponding values for G? 

and MOM schemes [28,91], together with Eqs. (3.16) an (3.19) 

we can construct the Table III. 
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We note that 

a) Hi and !ii are sensitive to the choice of the scheme 

for a and to the parameter r[91]. 

b) the two-loop contributions to the 5 function have an 

important effect [28]. In the absence of these two-loop 

effects Hi=Fi. i, These properties are due to the fact that the 

perturbative expansion for the ratio 2 P begins in a . In 

deep-inelastic scattering where the perturbative expansion 

for the relevant moments of structure functions begins with 

[a(Q2)lk(kL1) the effects a) and b) are much weaker. 

Two remarks in connection with the properties a) and b) 

should be made. First if perturbative expansion for P is 

behaving well it is irrelevant what we take for r or i, since 

the differences in hi or Ffi due to the change of these 

parameters will be compensated by the corresponding 

differences in the value of the effective coupling constant. 

Thus eventually a unique (up to still higher order 

corrections not included in the analysis) value for P should 

be obtained. We shall check below by using our standard 

values of ars and a MOM whether this is indeed the case. 

Second one may wonder why we worry about the two-loop B 

contributions at all. After all, in contrast to 

deep-inelastic scattering, we do not study here the evolution 

of the effective coupling constant. The point is however, 

that since the ratio P, in contrast to deep-inelastic 

structure functions, is completely calculable in perturbative 

QCD, we are interested in the numerical values of a. As we 
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have discussed in Section 2 (see Fig. 4), these values in s 

and MOM schemes are substantially suppressed by two-loop S 

effects (see Eq. 2.9) relatively to the leading order 

coupling constant. Therefore the two-loop contributions in 

question are a relatively important part of the next to 

leading order corrections to quarkonium decays and should be 

included in the analysis either implicitly as in Eq.(3.14) or 

explicitly as in Eq.(3.15). 

In Table IV we give the values of the second square 

brackets in Eqs. (3.14) and (3.15) for our standard Ai, the 

cases of Table III, and m=5 GeV, i.e., paraquarkonium in the 

T family. In the leading order all the entries in Table IV 

would be equal to unity. We observe that if Q=2m the next to 

leading order corrections in both schemes for (I are very 

large and perturbative expansion in a(2m) cannot be trusted. 

On the other hand, the next to leading order corrections are 

smaller if the expansion in the inverse powers of logarithms 

is made (281. If Q=m the next to leading order corrections 

in the MOM scheme and s scheme are small for the a expansion 

and [log]-1 expansion respectively. 

More generally it has been argued in refs.[30] and (911 

that the choice Q=m should lead to a fast convergence of the 

perturbative series for P. 

In spite of the fact that the numerical values in Table 

IV are very different for different cases, the final results 

for the ratio P are within 20-30% the same, as shown in Table 

V. Thus our rough estimate, based on hi of Eq.(2.17), is 
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P = (6.8'1.6).10-2 . (3.20) 

We do not think one can do much more accurate estimate of P 

without performing still higher order calculations. Except 

that maybe the method of ref. [31] could decrease the 

uncertainty in Eq.(3.20), but we have not studied this 

question. 

There is an important lesson to be drawn from this 

section. We have seen that the MS and MOM schemes lead to 

essentially the same QCD predictions for deep-inelastic 
C- 

scattering, Re e and photon structure functions. The same 

results would also be obtained in any other scheme for which 

the scale parameter A satisfies A~;i~ci\~A~~~. On the other hand 

we have found [28,30,91] that if only two terms in the 

perturbative expansion for P are retained, the final answer 

for P shows a non-negligible sensitivity to the definition of 

a (see Table V). This is due to the fact that the 

perturbative expansion for P begins with u2. We expect that 

the same feature will be found in the case of quantities for 

which the perturbative expansions begin with high powers of 

at such as many exclusive cross-sections, branching ratios 

for orthoquarkonium decays and large pI cross-sections. For 

these quantities also the two-loop contributions to the 6 

function will have generally an important effect. 
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3.4 Other Quarkonia Decays 

So far we have only discussed next-to-leading order 

corrections to the S-wave Jpc=O-' quarkonium decays. 

Recently similar calculations have been done for P-wave 

quarkonia decays [92]. We just list the results. Taking r=l 

and MOM scheme one obtains (for T family) 

p(o++) = cr2[1 + 3.9 :I 

P(2++) = cr2[1 - 0.1 ;I 

to be compared to (see Table III) 

P = P(O-+) = a211 + 1.8 ;] . 

(3.21) 

(3.22) 

(3.23) 

Further recent discussions of higher order corrections to 

quarkonia decays can be found in refs.[92] and 1931. General 

discussion of quarkonium physics and references to older 

papers can be found in [94] and in Section 7.5 of ref,[5]. 



49 

4. Review of Higher Order Corrections II 

In this section we discuss the higher order corrections 

to various semi-inclusive cross-sections for which the 

factorization shown in Eq.(l.l) has to be made. After some 

general remarks concerning infrared divergences, and mass 

singularities (Section 4.1), we recall in Section 4.2 the 

basic structure of QCD formulae for semi-inclusive processes. 

In Section 4.3 we present a procedure for a proper extraction 

of various elements of these formulae from perturbation 

theory. Section 4.4 is devoted to fragmentation functions. 

In Section 4.5 we discuss and compare the higher order QCD 

corrections to the following processes 

i) eh -+ eX 

+ - ii) e e + hX 

iii) hlh2 + )J+)J-x 

iv) eh 1 + eh 2 X 

f- v) e e + hlh2X 

where X stands for anything. 

(4.1) 

Regularities in these corrections are emphasized. In some of 

these processes the higher order corrections turn out to be 

large due to the appearance of so called r2 - and (In n)2 

terms. Methods of dealing with these terms are briefly 
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reviewed in Section 4.6. Finally in Section 4.7 we list and 

briefly discuss the remaining higher order QCD calculations 

done so far in the literature. 

4.1 Infrared Divergences and Mass Singularities 

In doing perturbative calculations in QCD one encounters 

infrared divergences and mass singularities. 

Infrared Divergences [95,96] arise from the presence of 

soft, real or virtual, massless particles. For instance each 

of the diagrams of Fig. 16 contains infrared divergence due 

to the emission of a soft real (Fig. 16a) or virtual 

(Fig. 16b) (massless) gluon. There is a theorem due to Block 

and Norsdieck [95,96] which states that in inclusive 

cross-sections all infrared divergences cancel. This 

cancellation occurs between diagrams with real and virtual 

soft qluon emissions. Thus cross-sections which do not 

discriminate between initial and final states differing by 

the inclusion of one or more soft gluons are infrared finite. 

In fact since in any experiment the energy resolution is not 

perfect all measurable cross-sections satisfy the above 

criterion and are infrared finite. In particular this is the 

case of quantities in Eqs. (1.2) and (1.3) (See however 

Section 4.7). 

Mass Singularities (collinear divergences) arise from 

the presence of coupled massless particles which are moving 

parallel to each other. For instance emission of a collinear 
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(massless) gluon by a massless quark leads to a mass 

singularity. There is a theorem due to Kinoshita [97] and 

Lee and Nauenberq [98] (KLN theorem) which states that for 

inclusive enough cross-sections all mass singularities 

cancel. Thus cross-sections which do not discriminate 

between initial and final states differing by the replacement 

of one quark by a quark and one or more collinear gluons are 

free of mass singularities. A nice example of a 

cross-section free of mass-singularities is the famous two 

jet cross-section of Sterman and Weinberg (991, where all 

collinear qluons and quarks reside in a cone of opening angle 

6>0. On the other hand in deep-inelastic scattering the mass 

singularities remain in the final perturbative cross-section. 

They are due to the emissions collinear to the incoming 

particle. This is also the case of cross-sections with 

individual hadrons (not jets) detected in the final state. 

Thus all perturbative cross-sections for processes listed in 

(4.1) contain mass singularities. In order to obtain a 

finite prediction one has to factor out these mass 

singularities and absorb them in the wave functions of 

initial or final hadrons (represented by An in Eq. (2.1)), 

which are incalculable by present methods. This is so called 

factorization of mass-singularities. The remaining cross- 

section is free of mass singularities but contains large 

logarithms (109 Q2) which have to be resummed to all orders 

in the renormalized coupling constant q2. To this end one can 

either use formal methods of renormalization group or other 
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techniques like summation of ladders. When all orders in q2 

are summed and in each order only leading logarithms are 

kept, then the leading order corrections of asymptotic 

freedom discussed in Section 2 are obtained. Summing 
2 next-to-leading logarithms to all orders in g , one obtains 

the next-to-leading order corrections of Section 2, and so 

on. 

There are many papers in the literature, which deal with 

the questions of infrared divergences, mass-singularities and 

factorization. Some of them can be found in refs.[95-1201. 

Others are listed in various reviews [2-121. We shall now 

present the outcome of these studies in a form useful for 

phenomenoloqical applications. 

4.2 Basic Structure 

In perturbative QCD the formulae for the processes 

listed in Eq. (4.1) have the following general structure: 

a) 
'h ii = I: f%bQ2) @ oi(x,a(Q2)) 

for the processes i) and ii), and 

b) 

uhlh2 
= ~ fZ1(Xl,Q21 ~ Uij 

ij 
2 h2 (xl,x,,cr(Q )) ~ fj 2 (X2,Q ) 

(4.3) 

for the processes iii) - v). 

In the above equations ft(x,Q2) stand either for the 

parton distributions (quark, antiquark, gluon) which measure 

the probability for finding a parton of type i in a hadron h 
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with the momentum fraction x, or they stand for the 

fragmentation functions, which measure the probability for a 

parton of type i to decay into a hadron h carrying the 

fraction x of the parton momentum. 'ij are the relevant 

parton cross-section and the summation in Eqs.(4.2) and (4.3) 

is over quarks, antiquarks and gluons. The @ denotes 

symbolically a convolution, example of which can be found in 

Eq.(2.46). Equations (4.2) and (4.3) are schematically 

represented in Figs. 10 and 17, where the circles stand 

either for parton distributions or parton fragmentation 

functions, the squares denote parton cross-sections, and the 

connecting internal lines stand for partons. 

The following properties of Eqs.(4.2) and (4.3) should 

be kept in mind. 

1) The Q2 evolution of parton distributions and parton 

fragmentation functions is governed by certain equations. In 

the leading order these are the known Altarelli-Parisi-DDT 

[50,4] equations. They are the same for parton distributions 

and parton fragmentation functions 11211 except for the 

transposition of the anomalous dimension matrix. Beyond the 

leading order three things happen. First, the evolution 

equations become modified by calculable corrections. Second, 

this modification is generally different for parton 

distributions and parton fragmentation functions. Third, the 

calculable corrections to leading order evolution equations 

depend on the definition of parton distributions and parton 

fragmentation functions. 
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2) The parton cross-sections are calculable in 

perturbative QCD. For processes i) - v) they are trivial in 

the leading order and identical to those encountered in the 

simple parton model. In particular the cross-sections 

involving gluons are zero. Beyond the leading order three 

things happen. *, the parton cross-sections involving 

quarks and antiquarks become modified by calculable 

corrections. Second, the parton cross-sections involving 

qluons become non-zero. They are O(a). Third, the order CL 

corrections to all parton cross-sections depend on the 

definition of parton distributions and parton fragmentation 

functions. 

3) The definition dependences of parton distributions, 

parton fragmentation functions and of parton cross-sections 

cancel in the final formulae for c h and 'hlh2 if a consistent 

calculation of all these quantities is made. In particular 

for the full cancellation of the definition dependence to 

occur, all singlet contributions to ch and eh h have to be 
12 

included in the analysis [122]. See Section 2.5.2 for a 

particular example. 

4) We have seen in Section II, that an important role in 

the discussion of deep-inelastic structure functions has been 

played by the matrix elements of local operators, An(u2). In 

particular, when normalized at u2=Q2, this matrix elements 

served to define Q2 dependent parton distributions (see 

Eqs. 2.33 and 2.43). An analogous role in the case of 

fragmentation functions is played by so-called time-like cut 
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vertices introduced by Mueller, 11121 which we shall denote 

by Wn(!-‘2)lT with "T" standing for time-like. It can be 

shown that An(!J2)'s are equivalent to so-called space-like 

cut vertices 11121. In order to keep a uniform notation we 

shall denote An(u2)'s by [VJ!J~)I, with "S" standing for 

space-like. Detailed discussion of cut vertices can be found 

in refs.[112-1181. Here it suffices to say that they are 

universal (process independent) factors which contain all 

mass-singularities of the theory. The anomalous dimensions 

of space-like and time-like cut vertices will be denoted by 

[v,l, and ]'n'T respectively. The former ones are just the 

anomalous dimensions of Eq.(2.7). 

4.3 Procedure for Calculations 

Essentially any experiment, which is relevant for the 

tests of QCD involves hadrons. On the other hand any 

perturbative QCD calculation deals with quarks and qluons 

instead of hadrons. Therefore any perturbative QCD 

practitioner is faced with the problem of extracting from her 

(his) perturbative calculation certain elements which can be 

inserted in the general formulae (4.2) and (4.3). 

Subsequently Eqs.(4.2) and (4.3) can be directly compared 

with experimental data. We shall outline here a procedure 

which accomplishes this program. 

Step 1. Calculate the cross-section for a given parton 

subprocess. For instance in the case of qs annihilation 

contributing to process iii) one has to consider diagrams of 
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Fig. 18. The result contains mass-singularities (see Section 

4.1) which can be regulated by keeping the mass-less quarks 

and antiquarks at 2 space-like momenta pf, p2<0. One obtains 

for the moments (in r=Q2/S) of this cross-section the 

following expression 

2 
Fn(s,q2) = 1 + -g!- -$"'nln 

pi 
C 16rr2 2 NS 

where r,'s are independent of Q2 and pi, O,n and yNs have been 

defined in Eq.(2.7). The result (4.4) has two bad features 

i) it is singular for pi+0 (mass singularities) 

ii) the constants rn depend on regularization scheme used. 

There are two ways to solve these two problems. We begin 

with the presentation of one of them. 

Step 2. Calculate the matrix elements of local 

operators (or cut vertices) taken between quark states. Such 

matrix elements contrary to the hadronic matrix elements can 

be calculated in perturbation theory. Using the same 

reqularization procedure as in the Step 1 one obtains 

Abi'($.g2) = 1 + -$ ;y;knln $ + an . 
v 

(4.5) 
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The matrix elements in question are divergent and have 

to be renormalized. Therefore the appearance of the 

subtraction point IJ . The constant terms an depend on both 

reqularization scheme and renormalization scheme used. The 

reqularization scheme dependence of an is however precisely 

the same as the one of m's in (4.4). 

Step 3. Rewrite Fn(Q2/pf,g2) of Eq.(4.4) as follows 

2 2 2 
Fn(s,g2) = ;,(<,q2]AC1)(~,q2)Aij2)(~,q2) . n (4.6) 

pi lJ u tJ 

The function Fn(Q2/u2,g2) is free of mass singularities 

and is given as follows 

ii (s,g2) 2 2 = + n 1 5 2 2 I-I 1671 
i yiSnln 4 - $ ygknln s + u 

n 
v 3 u 

(4.7) 

with 

U n = r n - 2an . (4.8) 

The constants un are regularization scheme independent but 

depend (throuqh a-) on renormalization scheme used in the 

Step 2. Equation (4.6) expresses the factorization of mass 

singularities which can be proven to all orders in q 2 

[lOS-1101. in(Q2/u2,g2) is an analog of the coefficient 
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function Ck,,(Q2/u2,g2) of Eq. (2.2). 

Step 4. The moments of the parton cross-sections of 

Eqs.(4.3) and (4.4) can now be obtained from Fn(Q2/U2,g2) by 
2 putting Q2=u . Denoting these moments by un we have 

u n : F,(l,92) , 

l.e., 

-2 
0 n =1+-g---u 

16n2 n ' 

(4.9) 

(4.10) 

This is just the analog of Eq.(2.34). Note that cr., which we 

called in this review "parton cross-section" differs from Fn 

of Eq.(4.4), which is the true parton cross-section obtained 

directly from the diagrams of Fig.18. Therefore sometimes in 

the lierature en is called the "short distance function." 

Step 5. For the Q2 evolution of parton distributions 

(or fragmentation functions, see Section 4.4), use the 

evolution equations of Section 2.5 corresponding to the 

definition A. Care must be taken that the two-loop anomalous 

dimensions [y(')'"lT and [y(l)'n]S, which enter these 

evolution equations are calculated in the same 

renormalization scheme as parameters an of Eq.(4.5). 

Step 6. Insert results of Steps 4 and 5 into Eqs. 

(4.2) or (4.3). 
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This procedure is necessary in order to calculate QCD 

predictions for processes i) and ii) of Eq.(4.1). However if 

definition B of parton distributions (see Section 2.5) and an 

analogous definition of fragmentation function (see Section 

4.4) are used, the calculation for processes iii) - v) can 

proceed as follows. The modifications are in Steps 2, 3, 4 

and 5. 

Step 2'. In the example above repeat the Step 1 for 

deep-inelastic scattering using the same reqularization 

scheme as in Step 1. The result is as follows 

Fi1'(<,g2) = 1 + &[- i yiSnln < + rDnl'] i=1,2 
pi -Pi 

(4.11) 

where r DIS 
n are specific to a given regularization scheme. 

They are however contrary to an 's in Eq.(4.5) renormalization 

prescription independent. 

Steps 3'. and 4'. The moments of the parton 

cross-sections, which we now denote by un' can be found from 

F&d = 
i 

(4.12) 

I.e., 

-2 
u,', =l+J---u, 

16s2 n ' 
(4.13) 



60 

with 

u,', = rn - 2r:Is . (4.14) 

'n' are regularization and renormalization prescription 

independent, and are generally different from un of 

W. (4.8). 

Step 5'. For the Q2 evolution of parton distributions 

(or fragmentation functions, see Section 4.4), use the 

evolution equations of Section 2.5 corresponding to the 

definition B. Equivalently if QCD agrees well with the 

experimental data for processes i) and ii) in (4.1), one can 

use directly the experimental data for the processes in 

question instead of evolution equations of Section 2. 

This completes the presentation of the procedure which 

should be used together with Eqs.(4.2) and (4.3). One remark 

is however necessary before we leave this subject. We have 

stated above that the parameters un and un' are independent 

of the regularization scheme used. In fact it has been found 

in the literature that for the processes which involve more 

than one (detected and/or target) hadron (processes iii)-v) 

in (4.1)) un and u,', calculated in the standard off-shell 

regularization scheme differ from those obtained in the 

on-shell or dimensional regularization schemes. The 

discussion is too technical to be presented here, and the 

reader is referred to the papers of refs.[123-1261 for 
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details. The outcome of these analyses (in particular 

[123]-[125]) is that whereas in the case of on-shell 

regularization scheme the procedure above can be directly 

applied (with -pz+mf,mi being the quark mass), the standard 

off-shell regularization scheme requires some modifications. 

Eventually a regularization prescripion independent answer 

for un and un' is obtained. 

The explicit applications of the first procedure to 

processes i), ii), iii) and iv) can be found in refs. 1221, 

[1251, [127] and [125,128) respectively. Applications of the 

second procedure can be found in refs. [37,48,129-1331. 

Needless to say both procedures lead to the same results 

for the cross-sections oh and oh h in Eqs. (4.2) and (4.3) 
12 

respectively. 

4.4 Fragmentation Functions and e+e-+hx 

In Section 2.5 we have discussed parton distributions 

beyond the leading order. Here we shall present an analogous 

discussion for fragmentation functions. Subsequently we 

shall compare the next to leading order corrections to the Q2 

evolution of fragmentation functions with the corresponding 

corrections for parton distributions. Also a comparison of 

the full next to leading order corrections for eh+eX and 

e+e-+hX in the non-singlet sector will be given. 

4.4.1 Corrections to Gribov-Lipatov Relation. We begin by 

discussing the anomalous dimensions [yislT relevant for 

fragmentation functions and their relation to the anomalous 
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dimensions [&I S which are relevant for parton 

distributions. The latter anomalous dimensions have been 

denoted in Section n 
2 by yNs. [y&Is and [yEsIT have the 

following perturbative expansions 

+ [‘NS 
(1) ,nl + . . . 

(4.15) 

The coefficients [y o,n 
NS 'S,T satisfy the following 

relation 

o/n 
[‘NS IS = [Y;;nlT , (4.16) 

which is due to Gribov and Lipatov [134]. Beyond the leading 

order this relation is no longer true and we have generally 

[‘NS 
(1) ,nl 

S = [YNS 
(1) ,nl 

T+An ' (4.17) 

where An measures the violation of Gribov-Lipatov relation. 

Since [yii)tn]s,T are renormalization prescription dependent, 

so are A n's and in principle it is possible to find a scheme 

in which An=0 [135]. The first calculation of [yNs (l) '"IT has 

been done by Curci, Furmanski and Petronzio [181. Recently 

"NS 
(1) ,nl 

T has been calculated in refs.[136] and [1371. The 
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results of these three groups are compatible with each other, 

although numerical values for IyNS 
(1) ,nl T differ due to 

different conventions used in these papers. We shall present 

here the results of ref.[l8]. 

The values of [Y$)'~]~ and [y$)'n]T obtained in B 

scheme [22] in ref.[l'l] and ref.[18] respectively are given 

in Table VI. Also the values of the parameters 

Ly(l) ,nl (0) ,n 
NS 

['n 'S,T = 
NS S,T _ ‘NS 

280 *1 (4.18) 

are shown there. Note that An vanishes for n going to 

infinity. 

4.4.2 Definition A. Now consider the evolution equations 

of parton distributions and parton fragmentation functions 

corresponding to the definition A of Section 2.5. We have 

(a) 
<qNS(Q2Pn = <qiS(Q2Pn 

2 dNS 
(a) [a(Q )] n 

a (Q;) 
D+[z;sls 

a (Q2) -a (Q;) 
4n 1 

(4.19) 

and 

(a) 
<DNS(Q2).n = <DNS(Q&, (a) [a(Q 2 dNS )] n [l+[z~slT 

a. (Q2) -a (Q;) 

a (Q;) 4* 1 

(4.20) 

Here in analogy with Eq.(2.33) 
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<DNs(Q2)>Aa) = J-'dz z"-~D;~(~,Q*) = [fS(Q2)lT (4.21) 
0 

are the moments of an effective Q2 dependent non-singlet 

fragmentation function D~~(z,Q~), and [VzS(Q2)lT denotes a 

time-like cut vertex normalized at u2=Q2. Finally z is the 

fraction of the parton momentum carried by the hadron in the 

final state. 

On the basis of Eqs.(4.19) and (4.20), and the Table VI 

we conclude that in the case of definition A and in the x 

scheme [138] 

i) evolution equations for parton distributions and parton 

fragmentation functions are essentially the same, i.e., 

Gribov-Lipatov relation is effectively violated very 

weakly, 

ii) evolution equations in question are essentially the same 

as leading order equations except for the modified 

evolution of the effective coupling constant (see 

Eq.(2.9)). 

4.4.3 Definition B. Here in analogy with Eq. (2.33') 

2 d;s 
<qNS(Q2)>Ab) = <qNS(Q;),l(lb)(~] 

a (Q2) -a (Q,2) 
I1+[RN,sl s 4n 1 

a(Qo) 
(4.19') 

and 
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2 dfS 
<DNs(Q2)>Ab) = <DNS(Q;)>Lb) [+] D+[R;SIT 

a (Q2) -a (Q;) 
4n 1 

a(Qo) 

(4.20') 

where 

NS NS NS 
[Rn 'S,T = ['n 'S,T + lBn 'S,T ' (4.22) 

The [Brs]s and [BzSIT enter the perturbative expansion of the 

coefficient functions of space-like and time-like cut 

vertices respectively, i.e. 

NS -2 NS 92 En (lrg lS,T = 1 + LB,., lS,T 16n2 . (4.23) 

rC;S(1,92) Is T are "short distance functions" which we called 
I 

parton cross-sections in the case of definition A (see Eq. 

2.34). In the case of definition B they are absorbed into 

the parton distributions and parton fragmentation functions. 

We know already [BtSls from Section 2. [BfSIT can be 

extracted from efe-+hX by using the procedure of Section 4.2. 

One finds [18,125] that [B:'lT and [B:S]s differ considerably 

from each other at all n, and that the difference is mainly 

due to the continuation of Q2 from space-like to time-like 

region. In particular at large n one finds a simple relation 

(see also (4.36) and 4.37)) 
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(4.24) 

where 8/3n 2 results from the continuation in question. At 

small n there are additional differences between [Bn NSIT and 

[BJ, which are not neglegible. In order to make this 

discussion more quantitative we have plotted in Fig. 19 the 

last factor of the following formal expression 

dNS 
[M 

NS 2 
(n,Q )I,,, = 2 [A,l,,,Ia(Q )I n [l+ @ [RtSls T I I 

(4.25) 

which is a generalization of Eq. (2.10). Results for !% and 

MOM schemes are shown for our standard values of Ai given in 

Eq. (2.17). we observe that the next-to-leading order 
+ - corrections to e e +hx are in both m and MOM schemes larger 

than the corresponding corrections in deep-inelastic 

scattering. 

On the basis of Eqs. (4.19’), (4.20’) and Fig. 19 we 

conclude that in the case of definition B 

i) evolution equations for parton distributions and parton 

fragmentation functions differ at "low" values of Q2<100 - 

GeV2 from each other. 

ii) evolution equations in question differ substantially at 

large n (large x) from the corresponding leading order 

equations due to the large values of [BnlS T at large n , 
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(4.24) 

where 8/3ir 2 results from the continuation in question. At 

small n NS there are additional differences between [Bn IT and 

[BnlS which are not neglegible. In order to make this 

discussion more quantitative we have plotted in Fig. 19 the 

last factor of the following formal expression 

NS 2 
(*,Q )I,,, = IA,l,,,la(QZ)l 

dNS 
[M n [l+ + [RNnSls Tl 

(4.25) 

which is a generalization of Eq. (2.10). Results for E and 

MOM schemes are shown for our standard values of Ai given in 

W. (2.17). we observe that the next-to-leading order 

corrections to e+e-+hx are in both iTS and MOM schemes larger 

than the corresponding corrections in deep-inelastic 

scattering. 

On the basis of Eqs. (4.19'), (4.20') and Fig. 19 we 

conclude that in the case of definition B 

i) evolution equations for parton distributions and parton 

fragmentation functions differ at "low" values of Q2<100 - 

GeV2 from each other. 

ii) evolution equations in question differ substantially at 

large n (large x) from the corresponding leading order 

equations due to the large values of [BnlS T at large n 
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and due to the non-trivial behavior (In n) 2 of these 

parameters (see Section 2.5 and 4.5). 

In summary due to the fact that [R~S)T>[RnNS1s we expect 

scaling violations in e e + -+hX to be larger than in eh+eX. 

4.5 Higher Order Corrections to Various Semi-Inclusive 
Processes 

We shall here complete our discussion of higher order 

corrections to the processes shown in Fig.17. We know 

already the Q2 evolution of the parton distributions and 

parton fragmentation functions (Sections 2.5 and 4.3), which 

are denoted in Fig.17 by circles. We also know the parton 

cross-sections (the squares in Fig.17) relevant for eh-eX and 

e+e--*hX. What remains then to discuss are the parton 

cross-sections for the processes of Fig. c-e, for which the 

general formula (4.3) applies. There are usually several 

sub-processes contributing in order ;1(Q2), but we shall 

concentrate here on those which involve only quark 

(antiquark) distributions and fragmentation functions. First 

these subprocesses contribute in the leading order. Second 

in the case of the definitions A and B (Sections 4.3 and 2.5) 

the dominant part of the next-to-leading order corrections to 

the processes in Fig. 17 comes from these subprocesses. It 

is of course possible to define parton densities in such a 

way that in a large kinematical range the corrections coming 

from subprocesses involving gluon densities are most 

important. But then our discussion would be less 

transparent. 
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Let us denote the moments of the cross-sections oh and 

ei of Eq.(4.2) generally by 

1 
on(Q2) = r dx x n-2 o(x,Q2) , 

0 
(4.26) 

and the double moments of the cross-sections o 
hlh2 

and eij of 

Eq.(4.3) by 

cl ..(Q2) = 11dxlj1dx2 ~;-~x;-~c(x~,x~,Q~) , (4.27) 
0 0 

where x,x 1 and x 2 are the relevant scaling variables. Then 

the moments of the cross-sections for the processes i)-v) of 

Eq.(4.1) can be written (neglecting obvious overall factors 

as 4naEM/3Q 2 in (4.30)) as follows 

DIS 2 CT n (Q ) = .q(Q2)>Aa)[l+ s+ [~nlSl I 

0 ;+e--hX(Q2) = <D(Q2),La) [I+ ‘ji2’ [BnlTl , 

oi;(Q2) = <q(Q2)>;a)<;(Q2)>;a) [l+ + B;;] , (4.30) 

(4.28) 

(4.29) 

ehl+h2X 
CI nm (Q2) = <q 

hl 
(Q2)>;a)}<Dh 

1 
(Q2)>Aa) [l+ “:,Q2’ Be,;] 

(4.31) 
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efe-+hlh2X 
" nm (Q2) = <D 

hl 
(Q2)>Aa)<Dh 

2 
(Q2)>Aa) [l+ + B;ie-] . 

(4.32) 

We have used here the definition A of parton densities 

and we have expanded the parton cross-sections in power of a 

keeping only the next-to-leading terms. Furthermore to make 

the formulae more transparent we have not summed over quarks 

and antiquarks. The parton cross-sections for these 

additional subprocesses are exactly the same to this order as 

the parton cross-sections shown in (4.28)-(4.32). The 

references where the explicit calculations of the parameters 

Bn and Bnm can be found are listed at the end of Section 4.3. 

Let us recall that the Q2 evolution of parton densities 

so defined is essentially equivalent to the leading order 

evolution except for the modification of c((Q~). Therefore the 

dominant part of the next-to-leading order corrections to the 

processes in question resides in the parameters Bn and Bnm. 

It turns out that there are certain regularities in the 

n and m dependence of the coefficients Bn and Bnm[139]. In 

order to find them it is instructive to calculate the large n 

and m behavior of these coefficients neglecting only the 

terms O(l/n,l/m). To this end the following formulae for the 

large n behavior of various functions which enter B n and Bnm 
are very useful 1231 



Sl(n) = y f 
j=l I 

+ log n + y E ' 

, 

. 
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(4.33) 

(4.34) 

(4.35) 

Here yE=0.5772 is the Euler-Masheroni constant. Using 

these formulae and the convenient table of Mellin transforms 

of ref. [48] we have obtained I1391 the large n and m 

behavior of Bn and Bnm: 

[BnJs => F;l) , 

[BnlT => F;l) + [l]; T2 , 

Beh => F;;) 3 f + (118 n2 

BDY nm 
=> F;;) 3 I + [218 112 

+ - 
B e e 

nm 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

(4.40) 



where (1) the universal functions Fn and FAi' are given in the 

iii? scheme as follows 

F(l n -) = ${2(log n) 2 + (3+4yE)log n 

2 
+ 3yE+ 2y; - 9 - +} (4.41) 

Ft2) = ${2(lOg n)2 + 2(log mJ2 + 4 log m log * 
nm 

+ 8yE log m + 8yE log n + 8~: 

-16~+r2] . (4.42) 

We are now in the position to list the important 

properties of the parameters Bn and Bnm. 

1) For large n and m there is a universality in the n 

and m dependence of Bn and B nm at the level of (log n)2, 

log m log n, log n and constant terms, which is broken only 

by a process dependent number ([...I) of the 8/3n2 terms. 

2) We have found [139] a simple counting rule for the 

number of "8/3rr2" terms one has to add to the universal 

function for a given process. This "8/'31~~ counting rule" 

reads as follows: count the number of target hadrons and/or 
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hadrons detected in the final state, which are on the other 

side of the large momentum. This is illustrated in Fig.20. 

3) As shown in Fig.19, at low n the universal behavior 

of [BnlS and [BnlT is no longer satisfied. We have found 
eh + - 

however that the exact values of B,,, BEi and Bzme for m,n>6 - 

are all equal to each other (except for 8/3n 2 terms) within 

5%. For m=4 and n=6 or vice versa the equality in question 

is within lo-15%. We have no simple explanation for this 

approximate universality at relatively low n and m values. 

4) 
DY In Fig.21 we have shown Bnm for n=m. We observe 

that due to the term [21 8/3n 2 the corrections are large at 

all values of n and m, although they are substantially 

smaller in MOM scheme than in E scheme. With increasing n 

and/or m BEi increase fast due to (log nJ2 or log n log m 
+ - 

terms. Similar results are obtained for BRme . For Benz the 

corrections are relatively small for small values of n and m 

but are large for n,m,6. 
eh + - 

5) The parameters Bnm and Bzme are much smaller if the 

definition B of parton distributions and parton fragmentation 
+ - 

functions is used. In this case B eh e e 
n' Bnm and BDY nm are 

replaced as follows 

Beh nm -+ BE; - [BnlS - [BmlT E ;;; , 

+ - e e + - 
Brm, + Bzme - [BnlT - [BmlT = i;'- , 

(4.43) 

(4.44) 
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BDY nm + B;; - [Bnls - [Bmls = ii; . (4.45) 

Since the 8/3n2 terms have been now absorbed in the 

definition "eh +- "e e of fragmentation functions Bnm and Bnm are only 

large for n,mz8. For n,m,6 they lead to corrections of order 

15%. For the massive muon production (Bnm "Dy) the corrections 

are still large at all values of n and m (although smaller 

than in the case of def.A). Here the 8/3n 2 terms are not 

cancelled. 

6) Due to the terms log n * log m the next to leading 

order corrections introduce non-factorization in n and m 

[128,125,130,1311. For the semi-inclusive deep-inelastic 

scattering eh+h2X this corresponds to non-factorization in x 

and s variables which has been studied in ref.[l401. 

Some of the implications of these results for 

phenomenology will be discussed at the end of this section. 

4.6 Summing Large~Perturbative~CorKections in QCD -~-- 

We have seen in Sections 4.4 and 4.5 that generally the 

next-to-leading order corrections to semi-inclusive processes 

are large at accessible values of Q2 for which 0.2~cr(Q2)~0.4. 

There are two sources of these large corrections: 

i) n2 terms 

and 

ii) (log nJ2, etc. terms. 

Can we do anything about these larger corrections? 
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4.6.1 Attempts to Redefine cx The parameters [BnlS, [BnlT 

and B nm in Eqs.(4.38)-(4.40) depend on the definition of the 

effective coupling constant. In particular as shown in 

Figs.19 the next-to-leading order corrections in the MOM 

scheme are smaller than in the FE scheme. Now any 

redefinition of the effective coupling constant corresponds 

to the following changes in the parameters Bn and Bnm: 

n 
Bn + B,, + b dNS r 

B nm 'B nm + bk& + disl , 

(4.46) 

(4.47) 

where b is a constant and diS z log n at large n. 

We may therefore try to find a scheme for which 

corrections are small for all processes. It is a trivial 

matter to convince onceself that this is impossible. See 

Fig.22. 

First we find that the terms [log n12 and log m-log n 

are not affected by the redefinition of a. This is what we 

already know from Section 2. Secondly if we choose the 

parameter b in Eqs. (4.46) and (4.47) to cancel the 8/3nL 

term in [BnlT we will spoil the perturbative expansion in 

deep-inelastic scattering for low values of n, which are the 

most relevant moments for present phenomenology. The 

situation is even worse if we try to cancel the terms 8/3n‘ 



in the Drell-Yan cross-sections. That the redefinition of 

a (Q*) cannot make all corrections to be small is also clear 

from the fact that Bnm of Eqs. (4.43)-(4.45), which are 

independent of the definition of cl,are large for large n and 

m. In the case of Drell-Yan this is also the case for low 

n,m. We have now a few choices. 

Choice 1: Wait until Q* is so large that a(Q*) is small 

enough to make perturbative expansions reliable. 

Note that if a=crEM all the corrections discussed 

here are of order of a few percent. 

This is definitely a passive and a 

pessimistic approach. 

Choice 2: We may try to argue that for some processes the 

effective ci (in a given renormalization scheme) 

should be evaluated at a momentum different from 

Q2; e.g., Q*(l-x). We have seen in Section 3 that 

in the case of paraquarkonium decays the change of 

the argument of a considerably improved the 

perturbative expansion. Since in semi-inclusive 

processes higher order corrections depend on n or 

x we should expect the modified argument of a to 

be x or n dependent. 

Choice 3: It has been pointed out that the large corrections 

discussed above are due to the emission of soft 

gluons. Therefore there is a hope that one could 

resum all the large corrections to all orders in 

a. 
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As we shall see the choices 2 and 3 are related to each 

other. It should be kept in mind that these two approaches 

(choice 2 and 3) go beyond the standard renormalization group 

approach. We shall now discuss how one can in principle sum 

the m* and (In n)2 terms. 

4.6.2 Summing TI 2 Terms This question has been first 

considered in connection with the massive muon production, 

and not for double moments of Eq.(4.30) but for single 

moments 

oD,y(Q*) = j-dT T n doDY 
T * 

(4.48) 

Using the definition B for parton densities, the qs 

contribution to 0; (Q*) is given as follows 

ozq(Q2) = <q(Q2)>;b)<q(Q2)>;b)[1+ u+ n ] ,ss . (4.49) 

Bzq has the following large n behavior 

Bqs = ${4[log n]* - 
2 

n 1.38 log n + 13.0} + F , 

with 
2 

13.0 = 2[2Yi + 1 + + - 3YEl - 

(4.50) 

(4.51) 



Note that in Eq. (4.50) the 8n2/3 and (In n)2 are 

dominant. The appearance of 8n2,'3 term comes from the 

continuation from space-like (deep-inelastic scattering) to 

time-like (Drell-Yan) Q2. It has been suggested 11411 that 

these TI 2 contributions can be summed to all orders in a(Q2) 

by using the asymptotic formula for elastic quark form factor 

1142-1441 

F(q2) = exp[- & wl( ~)logIlogPLl . 
A2 A2 

(4.52) 

Indeed in the case of the definition B, in which parton 

densities are defined through deep-inelastic scattering, 

which involves space-like q*, uiq can be written as follows 

o;'(Q*) =_ <q(Q2)>;b)<q(Q2),;b) 1 F(Q*) , * 
F(-Q*) 

(4.53) 

“= <q(Q2)>~b)<q(Q2)>~b)exp~~ .* a%@ l . (4.54) 

In Eq.(4.54) only the n* terms related to the 

space-like, time-like mismatch have been kept. Expanding the 

last factor in Eq.(4.53) in power of cr(Q*) we reproduce the 

En*/3 term in Eq.(4.50). Similar methods have been discussed 

in refs.[126]. 



78 

We think that this method of summing the pi 2 terms 

related to the continuation in Q 2. is quite reasonable. It 

should be however kept in mind that not all IT* terms are 

Summed by this method (e.g., the n* terms of Eq.4.51). 

The exponential factor in Eq.(4.54) leads to a 

considerable change in the normalization of c+" (Q2 ) as 

compared with the standard Dre ll-Yan formula, in which case 

this factor is equal unity Choosing h=0.4 GeV and four 

active flavours the change of normalization is 2.2 and 1.6 

for Q*=lO GeV* and Q*=lOO GeV* respectively. This change of 

normalization is required by the data [2121. Do these data 

indicate the presence of higher order corrections? 

4.6.3 Summing (log n)* Terms. It has been suggested by 

various authors [8,141,145-1471 that the most important 

higher order effects for large x(z) or large n can be taken 

into account already in the leading order calculations by 

using appropriately the kinematical bounds for the ks of the 

soft gluons. This does not mean of course that in the 

calculations discussed so far a wrong kinematics has been 

used. It should be however remembered that in the standard 

approach in which the expansion in a(Q*) is made the 

quantities like [log Q*(~-z)/A*]-~ are replaced by 
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1 1 = 
log Q*,'A'(l-2) log Q2/A2 

11 - log(l-z) + 0((10gQ~/A*)-~)] 
log Q*/A* (4.55) 

: a(Q*) 11 + lOg(l-z)cC(Q2)+O(Cr2(Q2)] . (4.56) 

The first term corresponds then to the leading order (in 

logarithms), the second term to the next-to-leading order and 

so on. Effectively then at each order the bound klLQ * 2is 

used instead of 2 2 
k,((l-z)Q as required for instance in 

e+e-+h+X. For z large enough so that llog(l-z)la(Q*) s O(1) 

the expansion in Eq.(4.56) breaks down and resummation to all 

order has to be done. The example above indicates that maybe 

by resealing the argument of the running coupling constant 

from Q* to Q*(l-x) one could automatically resum the series 

and take into account most important higher order 

corrections. It has been in fact suggested [146] that the 

following modification of the (leading order) evolution 

equations for fragmentation functions can accomplish it: 

dDNS(z,Q2) _ “;i*’ 11 d_y 
d(ln Q*) 

z yP(~)l+D(;,Q2) (4.57) 

+ 1 J,' $~[P(Y)cz(Q~(~-y))l+D(:,Q*) 2n . (4.58) 
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Here P(y) is the Altarelli-Parisi-DDT kernel and 

1 
[P(Y)]+ E P(Y) - s(l-y)J dx P(x) . (4.59) 

0 

A similar modification is suggested for quark distributions 

with (1-z) replaced by (l-x)/x. 

The implications of these equations are as follows t1461 

i) for finite (non-zero) n or x(z) away from 0 or 1 the 

standard evolution equations apply. 

ii) for l<<n<Q2/Qi or roughly l-x>Q*/Q* 0 the standard factor 

(see (4.19)) 

~1 (Q*) 
I- 
O. (Q;) 

dNS n 
.I ,7--J 

cx (Q;) 
-] 3 L" ,(4.60) 

large n a (Q*) 0 

is rep Ilaced by 

LNS Q2 n (Q*,Qi) = LE exp[- $(-log n + log - log&)] . 
0 nA* a (Q*) 

(4.61) 

Here 2 Q. is O(1 GeV2) but large enough so that 

a(Qi)/Znrl. Furthermore to obtain (4.60) we have used 
NS the following large n behavior of dn (see Eq. 4.33) 

dNS n = +1 - n(;+l) + 4 ; 41 log n . (4.62) 
0 j=* 3 
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Taking cxs(Q2) log nc<l but as(Q2) (log n)2yO(l) one 

obtains 

(log n)*l , (4.63) 

i.e., exponentiation of the dominant part of the next to 

leading order correction as given by (4.23), (4.36) and 

(4.41). 

iii) for n>Q*/Qi or roughly (1-X)CQ~/Q* one finds 

L;‘(Q*,Q;) = F2(Q2,Q;) = exp 16 
I- 380 .(logQ2 log - - 

a (Q,2) 

A2 CL (Q*) 
log 42) 

Qo2 
1 

(4.64) 

which has a form of the Sudakov formfactor [142,144,148] 

(see Section 7). In e+e-+h+X F*(Q* Q*) is ' 0 the 

probability that a photon of virtual mass QL produces a 

single energetic q;i pair plus an arbitrary number of 

soft gluons. The proprties i)-iii) apply to both the 

nonsinglet parton distributions and the nonsinglet 

fragmentation functions. But 

iv) for very small n due to different kinematical bounds for 
2 

kL the behavior of parton distributions and 

fragmentation functions is different. This is already 

seen in Fig. 19. Further details on this region can be 

found in [146,149]. 
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Note that L:' * (Q ,Qi) can be compactly written as follows 

I1461 

2 
F* (Q2,Q;, /F2 &,Q;) 

2 
n r; Q2 

QO 

L:' (Q*,Q,~) = 

F* (Q*,Q;) 
Q2 n>-- . 2 
QO 

(4.65) 

Note also that Eq.(4.64) predicts a very strong damping 

(faster than any power of QL) at large x. Thus at large x 

there is still another reason why the leading twist 

contributions discussed here are probably less important than 

higher twist contributions. 

This technique can also be used to sum the large 

(log n)* corrections to massive muon production (see 4.50). 

In fact the appearance of [log n] 2 terms in (4.50) can be 

shown to be due to the mismatch in the kinematical bounds on 

k: of gluons emitted in the massive muon production and the 

deep-inelastic scattering. 

At present there is no proof that the equations like 

(4.58) take into account all dominant logarithmic corrections 

to all orders in perturbation theory. But the approach is 

very interesting. Further study in this direction is 

important. 
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4.7 Other Higher Order Calculations 

There have been a few more higher order QCD calculations 

in the literature. We just list them now. 

1. Contribution of q+crq+q+y*(wa2)) to the mass 

distribution in the massive muon production [150,151]. 

2. Contribution of q+q+q+q+y 
* 

to the pI distributions in 

the massive muon production 11521. 

3. Contribution of q+cpq+q+y to the production of large pI 

real photons [153,154]. 

4. Next-to-leading order corrections to the one-hadron 

inclusive process h+h+h+anything [155]. The Born 

diagrams are calculated in [156,157,158]. 

5. Next-to-leading order corrections to h+h+jet +anything 

[159]. 

6. Four jet calculations in e e + - annihilation [160,161]. 

The next-to-leading order corrections listed under 1, 2 

and 3 are only large at kinematical boundaries. These large 

corrections can be presumably handled by the methods of 

Section 4.6. The origin of large QCD corrections to 

processes listed under 4,5 and 6 is however not understood at 

present. 

Finally we should mention a very important finding of 

Doria, Frenkel and Taylor 11621. These authors made a study 

of the infrared behavior of the inclusive process qq+virtual 

photon+anything (Ob2)). Their study has been repeated by 

Di'Lieto, Gendron, Halliday and Sachrajda [163] who, although 
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finding some errors in the intermediate steps of the 

calculations of Ref.[162], confirmed the main result of Doria 

et al: for the process in question the Block-Nordsieck 

cancellation of infrared divergences (see Section 4.1) fails. 

The left infrared divergence is O(m*/Q*) and will undoubtedly 

complicate the study of higher twist contributions to massive 

muon production. Generally a similar feature is expected for 

processes with two hadrons in the initial state [162-1661. 

The above results raise the following important question: 

does Bloch-Nordsieck mechanism work for leading twist 

contributions to the processes in question in order ak with 

k>2? 

4.8 Miscellaneous Remarks 

In this section we have given a review of higher order 

QCD corrections to various semi-inclusive processes. Now a 

few remarks on the phenomenology of these processes are in 

order. 

The Q* evolution of the fragmentation functions as 

measured in semi-inclusive deep-inelastic scattering has been 

studied in refs.[140,167,168]. It has been found that the 

data agree very well with the leading order QCD predictions. 

The question is then what happens beyond the leading order. 

We have not yet studied this question in detail but the 

following observation is maybe worth while mentioning. In 

spite of the fact that [RES]T>[RfS]s (see Fig. 19) the 
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next-to-leading order corrections to the ratio Pz of 

Eq.(2.29) are much smaller in the case of e+e-+hX than for 

deep-inelastic scattering (Table II). For instance P;=1.32 

and Pi=1.56. 

The authors of refs.[140.167,168] have also found 

non-factorization in x and z in their data in a qualitative 

agreement with QCD predictions. More study in this direction 

is however needed. In particular in refs.[140,167,168] the 

next-to-leading order corrections to the parton distributions 

and fragmentation functions have not been taken into account. 

Furthermore it should be mentioned that non-factorization in 

question can also be caused by higher twist contributions 

(Section 5). 

Of interest is also the large renormalization effect 

found in the massive muon production both in the theory and 

in the data [212]. More study of this effect is however 

needed before we can claim that the factor 2 (relative to the 

Drell-Yan prediction) found in the data is indeed a QCD 

effect. 
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5. Higher Twists 

At low values of Q* one has to worry in addition to 

logarithmic scaling violtions about power-like scaling 

violations. In perturbative QCD they are represented by 

contributions of operators of higher twist. In the presence 

of higher twist contributions, Eq.(2.10) generalizes to 

i(t) 
MNS(n,Q2) = 1 * 

d(t) 
2 2 

t=2 [Q21t-2 [U(Q )I + . . .I . 

even (5.1) 

where the sum runs over various twist (t) contributions: 

leading twist (t=2), twist four (t=4) and so on. i(t) 
n are 

incalculable hadronic matrix elements of spin n, twist t 

operators. n d(t) and ,(U 
n are calculable numbers: eq., 

d(*),dNS and R(*),RNS 
n n n n' 

Let us summarize what is known at present about the 

higher twist contributions. 

a) There are many operators of a given twist>* 

contributing to Eq.(5.1) so this equation iS in reality more 

complicated than we have shown. Consequently there are many 

unknown non-perturbative parameters An (t) (t>2) which have to 

be extracted from the data. This makes the phenomenology Of 

higher twist contributions very complicated. The situation 

might be considerably simplified in certain regions of 

phase-space (e.g., x+1) and for particular cross-sections in 
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which case one can identify and calculate the dominant 

higher-twist contributions [8,169,170]. 

b) The anomalous dimensions of some of the twist four 

(t=4) operators have been calculated in refs.[1711 and 11721. 
(2) The two novel features as compared with dn are as follows. 

d(4) negative as 

w1ereaF",",2PeJ log n for 

opposed to d,(,*)'O. Furthermore 

large n, the n d(4) may increase 

faster with n. These two features indicate that the 

structure of logarithmic corrections to higher twist 

contributions might be much more complicated than in the case 

of the leading twist. It would be interesting to study 

numerically these effects. 

cl Since the parameters An (t) are incalculable at 

present (see however below) one can study phenomenologically 

the effects of higher twist contributions in deep inelastic 

scattering by using "QCD motivated" parametrizations of the 

terms t>2 in Eq.(5.1). 

An analysis of this type has been done one year ago by 

Abbott and Barnett [1731, who found that the deep-inelastic 

data can be fit by higher twist contributions alone. Their 

combined analysis of twist 2 and higher twist contributions 

indicated that the value of the parameter A is strongly 

dependent on the size of higher twist contributions. If the 

latter increase the A decreases. Similar analysis has been 

done by Perkins [174]. 
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Recent analyses of Duke and Roberts [175] and Pennington 

and Ross [176] who combine all the existing data show however 

that the best fits to the data can be obtained if the higher 

twist contributions are small (see however [177]). 

In judging these results we should keep in mind that 

these analyses do not prove that the real QCD higher twist 

contributions are small. To prove it one had to calculate 

the non-perturbative parameters n .(t) of Eq.(5.1) and show 

that AAt) 's with t>2 are sufficiently small. Furthermore 

even if higher twist contributions may appear to be of little 

importance in the analysis of deep-inelastic structure 

functions for Q*,5 GeV* and x>O.8, they may be and they 

probably are important for x+1. 

d) We have seen that our understanding of the importance 

of higher twist contributions could be substantially improved 

(t) if we could estimate the parameters An . At present this can 

only be done in the context of specific models. In 

particular an estimate of the twist two matrix elements 

(AA*)) in the bag model has been done recently by Jaffe and 

Ross 1641, (2) who find that the parameters An are in a very 

good agreement with the low Q* ($1 GeV*) deep-inelastic data. 

We may then conclude that the full (twist two plus higher 

twist contributions) result for deep-inelastic structure 

functions in the bag model can only agree with the data if 

the higher twist contributions are small. As a consistency 

check at least the calculation of the matrix elements A(4) 
n 

should be done. Such a calculation although feasible is 
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however very difficult. One may of course ask how much the 

bag model has to do with QCD? In spite of this the analysis 

of ref.1641 is very interesting and undoubtedly one should 

pursue in this direction with the hope of gaining a better 

understanding of higher twist contributions. 

e) The question of power corrections to various 

semi-inclusive processes and also to processes of the type 

(1.2) has also been addressed in the literature [178,1801. 

In particular it has been conjectured [180] that the general 

structure of higher twist contributions will be analogous to 

that of leading twist contributions with parton distributions 

and parton fragmentation functions (referred to as single 

longitudinal functions) replaced by multi-longitudinal 

functions, which involve several partons at the same time. 

Much work however has still to be done before this approach 

can be put on the same footing with the leading twist 

perturbative QCD of Sections 2-4. In particular a general 

proof of factorization of mass singularities is missing for 

power corrections. Undoubtedly a theoretical study of power 

corrections will be complicated by the findings of 

refs.[162-1661 that the Bloch and Nordsiek theorem [95] fails 

for non-abelian theories at the m*/Q* level. 

f) We should also mention interesting calculations of 

higher twist contributions to pion structure functions [1691 

and to quark fragmentation functions into m [170]. The 

former lead to sizable effects in the angular distribution of 

heavy muon pairs produced in hadron-hadron collisions. The 
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latter induce z and y= (EV-Ep) /Ev correlation in 

semi-inclusive cross-sections such as vN+u?+X and - ‘JN’~~+TI-X. 

Both effects have been seen in the data ([81,[1811). More 

study is however neded before one can claim that the effects 

seen in the data are due to higher twist contributions and 

not to higher order QCD corrections to leading twist 

predictions. 
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6. Exclusive Processes 

6.1. Preliminary Remarks 

In the past year there has been a lot of progress in the 

understanding of QCD effects in exclusive processes. These 

include elastic form factors I transition form factors, 

elastic scattering at fixed angle and deep inelastic 

structure functions for x+1. Since these topics have been 

covered in detail at this Symposium by Stan Brodsky 11821 and 

Tony Duncan !1831, we shall here only present the basic 

structure of QCD formulae for exclusive processes and list 

the most important results. 

Let us begin by recalling the well known counting rules 

[184,1851. They are: 

a) For spin-averaged form factors at Itl>>M2 

Fh(t) J +-q t (6.1) 
t 

where n is the number of constituent fields in the hadron h. 

b) For fixed angle scattering at t>>M2, t/s fixed 

t g (AB+CD) s -&-- f(-) , tn-2 s (6.2) 

where "n is the total number of consitituent fields in hadrons 

A,B,C and D. 
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c) For deep inelastic structure functions at Q2>>M2 and 

(l-x)Q2/x fixed 

F:(x,Q~) * (1-x) 
2n,-1 

, (6.3) 

where ns is the number of spectator fields in the hadron h. 

For instance n=2, h=lO and ns=l for Fn ' Tp+TP and F: 

respectively. The dominant diagrams responsible for these 

counting rules are shown in Fig. 23. 

At this stage one should also mention 

d) Landshoff diagrams [1861, which are shown in Fig. 24 

and which lead for instance to 

(6.4) 

as opposed to l/t6 predicted by Eq. (6.2). Thus for large t 

the diagrams of Fig. 24 should dominate (in the absence of 

QCD effects) over the dimensional counting contributions. 

1) 

2) 

3) 

In QCD three things happen: 

the counting rules a) and b) although verified are 

modified by calculable logarithmic corrections, 

the Landshoff diagrams turn out to be suppressed by 

Sudokov form factors and are less important at large t 

than the dimensional counting contributions, and 

the counting rule c), although verified (except for 
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logarithmic corrections) for the proton, fails for the 

pion. 

There are many authors [8, 186-1981 who contributed to 

the understanding of QCD effects in exclusive processes, but 

the most extensive study has been done by Brodsky and Lepage 

[197]. We shall follow here their approach. A more formal 

discussion of exclusive processes can be found in refs. [191, 

193, 194). 

6.2. Basic Structure 

We have seen in Sections 2 and 4 that the basic elements 

of any QCD formula for inclusive and semi-inclusive processes 

were 

i) universal Q* dependent parton distributions and parton 

fragmentation functions for which only the Q2 evolution 

was calculable, 

and 

ii) process dependent elementary parton cross-sections 

(short distance functions), which were calculable in 

perturbation theory. 

Similarly the basic elements of any QCD formula for 

exclusive processes are 

i' ) universal Q* dependent "parton distribution amplitudes" 

@(xi,Q2) for which only the Q2 evolution is calculable, 

and 

ii') process dependent hard scattering amplitudes TH(xi,...) 
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which are calculable in perturbation theory. 

In analogy with Eqs. (4.2) and (4.3) we have 

Fny (Q2) = 
1 

0 
[dxl T,(xi,Q2~~,(xirQ2) I (6.5) 

for n-y transition form factor, 

Fh(Q2) = 
1 

0 
[dxl kW4$yi,Q2)T (~~,y~,Q~)@‘~(x~,Q*l t 

(6.6) 

for the electromagnetic form factor of a hadron h, and 

M(AB'CD) = 1 f-l [dxi10Z.(xc,p12)~~(xd,plZ) 

0 
i=a,b,c,d 

* TB(x~,s,@~.~.)$~(~~,P;)$' (x ,P2) B b I 

(6.7) 

s+- (p; = 3). for the fixed angle scattering amplitude as 

[dx]:dxldx26(1-x1-x2) in Eq. (6.5), and stands 

expressions in Eqs. (6.6-6.7). Equations 

shown schematically in Fig. 25, where (in 

Fig. 17) the circles stand for $(xi,Q2), the 

for analogous 

(6.5)-(6.7) are 

analogy with 

squares denote 

the amplitudes TB and the connecting internal lines stand for 

quarks or antiquarks. Only the dominant components of the 

hadronic wave functions (qs for mesons and qqq for baryons) 

are shown in Fig. 25. The components with more fermions 
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(eg. qs qq for mesons) are suppressed by at least one power 

of Q*. In general, components containing gluons 

(e.g. qi + several gluons) are not suppressed, but in the 

light-cone gauge used in ref. [197] these components are also 

down by powers of Q2. The generalization to other gauges can 

be found in the Appendix C of ref. [197]. 

6.2.1. Parton Distribution Amplitudes 

The quark distribution amplitude @h(xi,Q2) is the 

amplitude for finding constituents with the longitudinal 

momentum fractions xi in the hadron h which are collinear up 

to the scale Q*. @h(xi, Q*) is related to the hadronic wave 

function a (x h i,kL) by the following equation 

@,(xi,Q2) J- 
Q2 

dk; $,(xirkL) . (6.8) 

The Q2 dependence of ah(xi,Q2) is specified by an 

evolution equation [189,197] which in the leading order is 

given as follows 

Q2 a a~2 ~h(Xi'Q 
2 2 

o [dYlVh(xi,Yi)~h(Yi,Q ) . 

(6.9) 

The function Vh(Xi,Yi ) can be computed from a single gluon 

exchange kernel. It is the analog of the Altarelli-Parisi 
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function P qq [501 which enters the evolution equations for 

the non-singlet quark distributions. The explicit 

expressions for Vii (xiryi) and VB(xi,yi) (B=baryon) can be 

found in ref. [197]. From (6.9) one obtains for instance 

-dNS 

err (Xi,Q2) = X1X2 ~ 
n+l 

a 
n=0,2,4,... 

n Ci'2(x1-x2) 

(6.10) 

where 312 diS are the anomalous dimensions of Eq. (2.5) and Cn 

are Gegenbauer polynomials. The coefficients a n can be 

determined from $,(xi,Qt), which has to be taken from data at 

some arbitrary (not too small) value of Q2=Qi,: 

2(2n+3) 1 
312 

-ld(x1-x2)Cn 
2 a = n (2+n) (l+n) (X1-X2)‘~(Xi’Qo) ’ 

(6.11) 

since dl NS=O and d:" ~0 for n>l one obtains for Q2+- 

4n (xitQ2) + aOx1x2= J3 fnx1x2, (6.12) 

where fn=93 MeV is measured in the decay TI+~V. Equations 

(6.10) and (6.11) apply also to other mesons. Analogs of 

these equations for $,(xi,Q2) can be found in [197]. 
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TH(xi,yi,Q2) = 16' ;rtQ2' --? , 
x2y2 

(6.13) 

6.2.2. Hard Scattering Amplitudes 

TH in the case of the pion form factor is the amplitude 

for scattering of a q< system with the photon to produce q 

and i in the final state whose momenta are roughly collinear. 

In lowest order one obtains 

where CF=4/3. 

The corresponding amplitudes relevant for F 
n-i and FB are 

given in [1971. 

6.3 Basic Results 

Expressions (6.10) and (6.13) and analogous expressions 

relevant for Fnyt FB and M(AB+CD) can now be inserted into 

the general formulae (6.5)-(6.7). One obtains 11971 (leading 

order) 

Fry (Q2) = k $ 

F (Q2) = 4aC '(Q2)' 
TI F Q2 

n=>2 4anpn $]-d"1 2 , 
, , 

(6.14) 

(6.15) 

(6.16) 

and 
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~(AB+CD) la;ge s [*I'-* (ln $)2jli f(ec.,.), (6.17) 
^ 

large pi 

where y i depend on the spin of the hadron. For pions yi=O, 

while for protons yi=-2/3B0. G,(Q*) stands for proton's 

magnetic form factor. Equation (6.15) has also been obtained 

in ref. 11921. The coefficients bnm can be determined from 

Qp(Xi' 0 Q2) which has to be taken from the data. In order to 

find fWc m ) . . the Bc m . . dependence of TH which enters 

Eq. (6.7) must be known. Unfortunately such a calculation is 

very difficult and even in the leading order involves 

millions of diagrams. The large number of diagrams 

contributing to hard scattering sub-processes discussed 

above, may however explain why these sub-processes dominate 

in wide angle scattering over the Landshoff contributions 

[186]. Furthermore as has been shown in refs. [197] and 

[1981 the latter contributions are in QCD suppressed by 

Sudakov form factors [199] which fall faster than any power 

of t as -t+=. We shall discuss Sudakow form factors briefly 

in Section 7. 

Comparing Eqs. (6.14)-(6.17) with Eqs. (6.1) and (6.2) 

and taking into account the suppression of Landshoff diagrams 

we observe that the counting rules a) and b) are verified 

except for logarithmic corrections. How important are these 

corrections? This has been discussed in detail by Stan 

Brodsky, so let us only list a few important points 
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i) Note that the asymptotic behaviour of the pion form 

factor is fixed (see Eq. (6.12)): 

FT (Q2) 
2 

+ 16~ f - - 71 2 a(Q ) = "ii2' [0.43 GeV2] . 
Q2 

(6.18) 

Evaluating equation (6.18) at Q2=4 GeV* and using 

ALo=0.5 GeV one obtains Q*F,(Q*)$O.2 as compared to the 

experimental value 0.40 c 0.08 [200]. Thus the terms 

with n#O must be important. Choosing 

$+Q;) J- [x1x21 l/4 at Qi=2 GeV2 and AL0 =0.40 ? 0.10 

one obtains from (6.11) and (6.15) Q2F,(Q2) which is 

consistent with the available data at Q2 < 4 GeV*. (See 

Fig. 12 of ref. [197].) Present data are however not 

good enough to test the logarithmic QCD corrections to 

the pion form factor. 

ii) Similar analysis shows that a value of 11~0.2 GeV, 

preferrably AcO.1 GeV, is required to fit the 

experimental data [201] for G,(Q2). In fact the data do 

not show almost any Q2 dependence for Q4 G,(Q2) for 

Q2>5 GeV2. 

iii) For elastic scattering due to the high power of a(t) in 

Eq. (6.17), the effective power of 1/t is modified 

relatively to the counting rules. This is illustrated 

in Table VII. Since the counting rules seem to agree 

well with experimental data [202] again a very small 

value of A(cO.1) is required. This value is 
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substantially smaller than the one extracted from 

deep-inealstic scattering in the absence of higher twist 

contributions. Of course in order to make a meaningful 

comparison of scale parameter A extracted from 

deep-inelastic scattering with that obtained from wide 

angle scattering, the next to leading order corrections 

to the latter have to be calculated. This involves 

calculations of higher order corrections to the kernel 

Vh(xi,yi) which enters the evolution equation (6.9) and 

similar calculations for the hard scattering amplitude 

TH in (6.7). The latter calculations are particularly 

difficult. 

6.4. Miscellaneous Remarks 

Discussions of deep-inelastic structure functions for 

x+1 and (l-x)/x Q2 fixed can be found in ref. [1821, [183], 

[1901 I [1921 and in particular in Section 8 of ref. [a]. 

Some aspects of this topic have also been discussed in 

Section 4.6 of the present paper. 

It should also be remarked that the life might not be as 

easy as presented here. For possible complications, in 

particular in fixed angle scattering, we refer the reader to 

refs. [1831, [1931 and [194]. 



7. pL Effects 

7.1 Preliminaries 

Among the most spectacular QCD effects are P.L effects 

which are caused by gluon bremsstrahlung. These have been 

most extensively studied in the massive muon production and 

in e+e- annihilation. We shall here concentrate on the 

massive muon production. 

In the standard Drell-Yan model and in the absence of 

the primordial kl of annihilating quarks and antiquarks the 

transverse momentum pL of the muon pair is zero. In QCD Pi 

is no longer zero and its perturbative component receives the 

dominant O(a) contribution from the diagrams of Figs. 18b,c 

and 26. The pL distributions resulting from these diagrams 

have been calculated by various authors (Cl011 I [204-2111). 

The result is compared with the data 12121 in Fig. 27. It is 

clear that the diagrams of Figs. 18 and 26 cannot reproduce 

the data. In particular the shape at small and intermediate 

P, is wrong. Furthermore at low PA the predicted 

distribution behaves as l/p: contrary to the data which is 

rather flat. For large p: 3 0 (Q2) the situation is much 

better but the theoretical predication lies somewhat lower 

than the measured distribution. 

A little thinking convinces us however that there is as 

yet no need to worry or to panic, and this for four reasons. 
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First there is something positive in the Fig. 27. The 

data show large pL effects in accordance with theoretical 

expectations. Furthermore the predicted increase of <P:> 

with s and Q2 is confirmed by the data 12121. 

Second the theoretical predictions shown in Fig. 27 are 

based on 'the expressions like 

da 4na& 

dQ*dp: 
s gsQ2 ldxldx2 q(xl,Q2):(x2,Q2)c(xl,x2,T,Q2/p:) 

(7.1) 

in accordance with the general procedure of Section 4.2. In 

the case of pL distributions this procedure only applies 

11131 for p:=O(Q*). If pz is O(Q*) at order a; there is only 

an n-fold logarithmic divergence due to mass (collinear) 

singularities, while the infrared (soft) divergences cancel 

between real and virtual gluon corrections. As discussed in 

Section 4 the mass singularities can be factored out and the 

left over large logarithms aGlognQ2 can be resummed to give 

Q2 dependent parton distributions. Note that if only the 

leading logarithms in each order of perturbation theory are 

kept 2. then as long as pL is O(Q2) it is irrelevant whether p: 

or Q 2 is the variable which the quark distributions depend 

on. Any difference between choosing pt or Q2 can only be 

consistently treated once the next-to-leading logarithms are 

taken into account. For pz<<Q2 the situation is more 

complicated. Now at each order in perturbation theory the 

dominant corrections to the standard Drell-Yan process are of 
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the form aEln2n 2 (Q /pt) arising from the emission of n gluon 

which are both soft _ and collinear. If Q2>>pt the 

perturbation theory breaks down and these large logarithms 

have to be summed to all order of perturbation theory. 

Futhermore it is now relevant to find out whether it is Q2 or 
‘ 

PI which enters the evolution equations for parton 

distributions. We shall deal with these questions in Section 

7.2. In any case we should not be surprised that the formula 

like (7.1) disagrees with data for pz<<Q*. 

Third at low pL one may expect non-perturbative effects 

related to the intrinsic ,(primordial) ‘kL> to be of 

importance. The usual procedure [204] is to convolute the 

perturbative result of Fig. 27 with the primordial 

distribution chosen to have the form 

f(kz) * exp[- 
k2 

---+I 
2< kL> 

(7.2) 

Choosing <kL> 600 MeV one obtains a good agreement with the 

data. This procedure is however very ad hoc and the reached 

agreement with the data cannot be regarded as a success of 

the theory. Nevertheless the primordial k, effects should be 

somehow taken into account. How really they are important 

can only be answered once the perturbative part of the pL 

distributions at relatively low pL(O(l GeV)) is correctly 

taken into account. We shall come to this in Section 7.2. 



Fourth one may ask whether the next-to-leading order QCD 

corrections which are here O(az) could modify substantially 

the leading order result of Fig. 27. In particular the 

subprocess q+q+q+q+Y * could be of importance if the two 

initial quarks are valence quarks. Note that this process is 

expected to be more important for pL distributions than for 

mass distributions since the perturbative expansion for the 

latter begins in O(a') whereas the former begins in order a. 

Indeed it has been found in ref.[154] that the inclusion of 

the subprocess q+q+q+q+y* brings the QCD prediction for the 

pl distributions in massive muon production closer to the 

data especially at large pL. Of course in order to complete 

the study of next-to-leading order corrections to pl 

distributions, other contributions of O(ai) have to be 

evaluated. 

7.2 Intermediate and Small e, 

The region A2<<p;<<Q2 has been first studied by 

Dokshitzer et al. [213]. As we have remarked above, in this 

region large loarithms anlw2" (Q2/pz) appear and the 

summation to all order in perturbation theory has to be 

performed. This has been done in ref.]2131 with the 

following result (valid in the double leading logarithmic 

approximation, DLL) 
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2 

C (p:,Q2) z I pI du 
0 dk;dQ2 

dk2, , 

= 1 e; q(xl,p;)g(x2,p;)S2(~:,Q2) . (7.3) 
i 

Here ei are the quark charges, and q(x2,~:) are 

parton distributions evaluated at pt(not Q2) and S2(p:,Q2) is 

the square of a formfactor (denoted in (2131 by T2) which the 

authors of ref.[213] found to be different from the Sudakov 

formfactor [199] (see 4.64). Subsequent analyses 1214-2211 

have confirmed the general structure of Eq.(7.3) except that 

S2(p:,Q2) turned out to be indeed the square of the Sudakov 

form factor. 

In the case of a fixed strong interaction coupling 

constant c( one obtains (in DLL) 

s2(Pt,Q2) = exp[- $+ 10g~(~~/p:)] , (7.4) 

whereas when CL is running 

S 
2 2 2 16 2 2 (plrQ ) = exP(- E log(Q /A )log( log Q2'A21 + g log(Q'/p:)] 

log p2/A2' I 
(7.5) 

Note that (7.5) can be obtained from (4.64) by putting there 

Oo=25/3, Qi=pl and using the leading order formula for a. 
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It has been pointed out by Parisi and Petronzio (2141 

that the physics of pl<<Q2 can be easier studied in the 

impact parameter space rather than in the momentum space. In 

particular the exponentiation of soft gluon emissons which 

lead to large logarithms can be done directly in the b rather 

than k, space. Furthermore it is claimed in refs.12171 and 

[218] that such exponentiation in the b space can be proven 

to occur to all orders in perturbative theory and in all 

logarithms (leading next to leading and so on). 

Defining a(b,Q2) by 

do 

dp,dQ2 
= 2 Jd2b exp[-i b.h,lB(b,Q2) , (7.6) 

one obtains [214,218,2201 

E(b,Q2) = 1 efq(x l,~)<(x2,>l~2(b2,Q2) + O(i2(~l) , (7.7) 
i 

where (in the leading order approximation) 

S2(b2,Q2) = S2(p$Q2) 1 
pf=l,'b2 

(7.8) 

with S2(pf,Q2) given by Eqs.(7.4) and (7.5). 

Details of the calculations which lead to the formulae 

above can be found in refs.[214]-[221]. Here we shall only 

list some of the implications of these results and discuss 
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the physics behind it. 

1. The formulae above are obtained by summing the 

diagrams of the type shown in Fig.28 with all emitted gluons 

being both soft and collinear to the incoming q and i. 

2. The occurrence of cr210g 2n (Q2/P:) terms is a 

consequence of the incomplete cancellation between soft 

virtual and real gluon emissions. Restricting pz of the muon 

pair to the values much smaller than Q2 puts also a 

restriction on kl of the emitted gluons in the real diagrams. 

There is no such restriction for virtual diagrams. Hence 

incomplete cancellation. 

3. The formfactor S2 plays the role of an effective 

quark formfactor and it gives the probability for massive 

(Q2) muon pair production in qs annihilation without emission 

of gluons having kl greater than pL. When p:<<Q2 this 

probability is very small. 

4. In the impact parameter space one can distinguish 

three regions ([214],[218]) 

i) OLb2Ll/Q2 in which the standard perturbative 

calculations (see 7.1) are justified, 

ii) l/Q2Lb2zl/A2 in which the formulae of this section 

apply I 

and 

iii) b2Ll/A2 in which non-perturbative effects become 

important. 

It has been pointed out [2141 that the contribution from the 
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last region to the integral in Eq.(7.6) tends to zero faster 

than any power of Q2 (see also point 3 above). Consequently 

at large Q2 the pL distribution is dominated by the two first 

regions, and is calculable even for small values of pi. 

Correspondingly the sensitivity to the intrinsic kL is lost 

at large Q2. 

5. Note that S2(p:,Q2) as given by Eqs.(7.4) and (7.5) 

has the shape in pL opposite to the one obtained on the basis 

of the lowest order diagrams of Figs.18 and 26 (see Fig.27). 

Therefore the inclusion of soft gluon emissions into the 

phenomenological analysis helps [213,214] to explain the 

shape of the pL distributions seen in the data. 

7.3 Outlook 

The next step is to study the effects of non-leading 

logarithms which arise for instance from diagrams of Fig. 28 

with some of the emitted gluons being non-soft or 

noncollinear to the incoming q and i. The study of these 

effects is just beginning [142,144,216,218]. In particular 

in ref.]2181 a systematic procedure for the study of these 

effects has been suggested. It is also important to connect 

smoothly the regions i)-iii) discussed above. Progress in 

this direction has been made in refs.[218] and [219]. 

One should also remark that the effects of the quark 

formfactor discussed here can also be studied in other 

processes [213,216,222]. In particular in ref.]2161 it has 
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been suggested that the quark formfactor can be better "seen" 
+ - in e e annihilation than in the massive muon production. A 

recent phenomenological study of quark formfactor effects in 

e e + - annihilation is given in [223]. 
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8. Jetology and Photonology 

Our last (seventh on our list) topic deals with jets and 

photons. Each of these two topics could constitute a 

separate review of the length of the present one. Because of 

lack of time we shall here only make a few remarks. 

During the last few years there have been literally 

hundreds of papers which deal with jet physics. These are 

reviewed in refs.[5-12,224,225]. Let us just list some of 

the latest theoretical achievements in this field. 

1) Calculations of higher order corrections to 

Sterman-Weinberg formula [115,226]. In particular Duncan, 

Gupta and Mueller[ll5] have developed a renormalization group 

approach which allows a systematic study of higher order 

corrections to single jet Sterman-Weinberg cross-sections. 

2) Summation of leading logs in thrust distributions 

(T=l) [227]. 

3) Four jet calculations [160,225,228] and general 

investigation of higher order effects. These are important 

for the determination of the effective coupling constant and 

for the tests of the non-abelian nature of QCD 12291, [225]. 

4) Generalization of the jet calculus to include exact 

kinematical constraints [230,231] and a detailed study [231] 

of preconfinement [232]. 

5) Extension of the jet calculus [233] beyond the 

leading order [136], [234]. 
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6) A study of the multi-jet structure in QCD [235], and 

7) Further study of hadronization effects [236],[10]. 

Other theoretical achievements and the comparison with 

experimental data can be found in the quoted reviews. 

During the last few years there has been a lot of 

interest in the study of processes involving real and almost 

real photons. Let us just mention some of the attractive 

features of photon physics. 

1) The photon-photon collisions (see Section 3) become 

an increasingly important source of hadrons in e+e- 

collisions as the center of mass energy is raised. In fact, 

in the LEP region these processes will be more important than 

the standard annihilation process. 

2) In particular the proceduction of high pI jets in 

e+e-+e+e-X becomes important at LEP energies [83,84,237]. 

31 The structure of QCD formulae for semi-inclusive 

processes involving photons are similar to the one presented 

in Section 4 except that the parton distributions in hadrons 

and fragmentation functions into hadrons are replaced by the 

corresponding distributions for photons. Since the latter 

(see Section 3) are at large Q2 exactly computable, the 

number of free parameters in processes involving photons is 

substantially smaller than in the corresponding processes 

involving hadrons. 

4) Because the parton distributions in a photon are 

much harder than the corresponding distributions in hadrons, 

one finds that the photon beams are much more efficient than 
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hadron beams at producing high p, events [238]. 

5) The production of direct photons in hadron hadron 

collisions should also become incresingly important [239]. 

Photon physics has been reviewed in refs. 

[8,83,84,240]. 
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9. Summary 

In this review we have discussed QCD predictions for 

inclusive and semi-inclusive processes with particular 

emphasis put on higher order corrections. Also a discussion 

of exclusive processes and of pL effects has been given. 

While discussing higher order effects we have stressed 

the following new features not encountered in the leading 

order: 

i) gauge and renormalization-prescription dependences of 

separate elements of the physical expressions: 

ii) freedom in the definition of cr(Q2); 

iii) freedom in the definition of parton distributions and 

parton fragmentation functions beyond the leading order 

approximation. 

These features have to be kept in mind when carrying out 

calculations to make sure that various parts of the higher 

order calculations are compatible with each other. Only then 

can a physical result be obtained which is independent of 

gauge, renormalization scheme, particular definition of 

G2 (Q2), and particular definitions of the parton 

distributions and fragmentation functions. 

We have seen that the higher order corrections are 

sometimes large (in particular at kinematical boundaries) and 

a resummation of them has to be made. 
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In spite of the fact that a lot of progress has been 

done during the last seven years in the understanding of QCD 

effects in various processes, still many outstanding 

questions have to be answered. A partial list of topics 

which deserve futher study is as follows: 

1) Power corrections (higher twists) in inclusive and 

semi-inclusive processes. 

2) The study of power corrections in hard scattering 

processes with two incoming hadrons will be complicated by 

the findings of refs. [162-1661 that the Block-Nordsieck 

cancellation of infrared divergences (see Section 4.1) does 

not occur in these processes at m2/Q2 level. Further 

investigation of the results of refs.[162-1661 is of great 

importance. 

3) Calculations of higher order corrections to 

exclusive processes. 

4) Further study of Sudakov-like effects (Section 7) in 

various processes. 

5) More phenomenology of higher order corrections in 

particular for processes for which these corrections are 

large and a resummation of these corrections is needed. 

6) Further exploration of photon physics. 

7) Further study of spin effects [241-2431, [62]. 

8) Better understanding of non-perturbative effects, 

and many others. 
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Seven exciting years have passed. We are looking 

forward to the seven years to come during which many of the 

problems listed above will be solved and many new questions 

will be asked. 
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?<g:lre Captions 

F io _* i Typical diagrams which enter the calculation of 
NS 

Bk,n: =) diagrams contributing to the virtual 

Compton amplitude, b) diagrams contributing to the 

matrix elements of non-singlet operators. 

Fig. 2 Coefficients RN' 2,n as functions of n for the KS and 

MOM schemes and four effective flavors. 

?ig. 3 FINS 2 !n,Q') as given by zq. (2.10) as functions of Q2 

COT ,:,=0.30 GeV and ;.,,Gy=0.55 GeV. j L 
Fig. 4 The effective coupling constant .z(Q2) for the s and 

lMOM schemes with Ai of Eq. (2.17). For comparison 

also c((Q2) in the Leading order approximation is 

shown. 

Fig. 5 "EmpiricalW relation between II= and AMOM (dashed 

curves) obtained by fitting M2 NS(n,Q2) of Eq. (2.10) 

in the MOM scheme to the corresponding moments in 

the i?% scheme. The fit has been done for 2 < n < 8 - - 

and 10 GeV2 5 Q2 c 200 GeV2. The solid line - 

represents the exact relation (2.16). 

Fig. 6 1 + 3(Q2)/4rr RySn as functions of n, for Q2=L0 GeV2, ‘ 
Q2=100 GeV2, and the Ai values of Eq. (2.17). 

Fig. 7 L + R~Sn(Q2),/(3,1n(Q2/n:,) as functions of n for 
2 (2 =lO GeV 2 , Z2=100 GeV2 and the >A i values of 

zq. (2.17). 

Fig. a 3) Diagram entering :::14+ calculation of y 3 
n of 

zq. (2.24) and corresponding to q+q+qq transition. 
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